The Algorithms logo
算法
关于我们捐赠

二分查找

M
A
R
S
A
P
以及其他 4 位贡献者
#!/usr/bin/env python3

"""
Pure Python implementations of binary search algorithms

For doctests run the following command:
python3 -m doctest -v binary_search.py

For manual testing run:
python3 binary_search.py
"""

from __future__ import annotations

import bisect


def bisect_left(
    sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
    """
    Locates the first element in a sorted array that is larger or equal to a given
    value.

    It has the same interface as
    https://docs.pythonlang.cn/3/library/bisect.html#bisect.bisect_left .

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item to bisect
    :param lo: lowest index to consider (as in sorted_collection[lo:hi])
    :param hi: past the highest index to consider (as in sorted_collection[lo:hi])
    :return: index i such that all values in sorted_collection[lo:i] are < item and all
        values in sorted_collection[i:hi] are >= item.

    Examples:
    >>> bisect_left([0, 5, 7, 10, 15], 0)
    0
    >>> bisect_left([0, 5, 7, 10, 15], 6)
    2
    >>> bisect_left([0, 5, 7, 10, 15], 20)
    5
    >>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
    3
    >>> bisect_left([0, 5, 7, 10, 15], 6, 2)
    2
    """
    if hi < 0:
        hi = len(sorted_collection)

    while lo < hi:
        mid = lo + (hi - lo) // 2
        if sorted_collection[mid] < item:
            lo = mid + 1
        else:
            hi = mid

    return lo


def bisect_right(
    sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
    """
    Locates the first element in a sorted array that is larger than a given value.

    It has the same interface as
    https://docs.pythonlang.cn/3/library/bisect.html#bisect.bisect_right .

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item to bisect
    :param lo: lowest index to consider (as in sorted_collection[lo:hi])
    :param hi: past the highest index to consider (as in sorted_collection[lo:hi])
    :return: index i such that all values in sorted_collection[lo:i] are <= item and
        all values in sorted_collection[i:hi] are > item.

    Examples:
    >>> bisect_right([0, 5, 7, 10, 15], 0)
    1
    >>> bisect_right([0, 5, 7, 10, 15], 15)
    5
    >>> bisect_right([0, 5, 7, 10, 15], 6)
    2
    >>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
    3
    >>> bisect_right([0, 5, 7, 10, 15], 6, 2)
    2
    """
    if hi < 0:
        hi = len(sorted_collection)

    while lo < hi:
        mid = lo + (hi - lo) // 2
        if sorted_collection[mid] <= item:
            lo = mid + 1
        else:
            hi = mid

    return lo


def insort_left(
    sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
    """
    Inserts a given value into a sorted array before other values with the same value.

    It has the same interface as
    https://docs.pythonlang.cn/3/library/bisect.html#bisect.insort_left .

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item to insert
    :param lo: lowest index to consider (as in sorted_collection[lo:hi])
    :param hi: past the highest index to consider (as in sorted_collection[lo:hi])

    Examples:
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_left(sorted_collection, 6)
    >>> sorted_collection
    [0, 5, 6, 7, 10, 15]
    >>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
    >>> item = (5, 5)
    >>> insort_left(sorted_collection, item)
    >>> sorted_collection
    [(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
    >>> item is sorted_collection[1]
    True
    >>> item is sorted_collection[2]
    False
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_left(sorted_collection, 20)
    >>> sorted_collection
    [0, 5, 7, 10, 15, 20]
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_left(sorted_collection, 15, 1, 3)
    >>> sorted_collection
    [0, 5, 7, 15, 10, 15]
    """
    sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)


def insort_right(
    sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
    """
    Inserts a given value into a sorted array after other values with the same value.

    It has the same interface as
    https://docs.pythonlang.cn/3/library/bisect.html#bisect.insort_right .

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item to insert
    :param lo: lowest index to consider (as in sorted_collection[lo:hi])
    :param hi: past the highest index to consider (as in sorted_collection[lo:hi])

    Examples:
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_right(sorted_collection, 6)
    >>> sorted_collection
    [0, 5, 6, 7, 10, 15]
    >>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
    >>> item = (5, 5)
    >>> insort_right(sorted_collection, item)
    >>> sorted_collection
    [(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
    >>> item is sorted_collection[1]
    False
    >>> item is sorted_collection[2]
    True
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_right(sorted_collection, 20)
    >>> sorted_collection
    [0, 5, 7, 10, 15, 20]
    >>> sorted_collection = [0, 5, 7, 10, 15]
    >>> insort_right(sorted_collection, 15, 1, 3)
    >>> sorted_collection
    [0, 5, 7, 15, 10, 15]
    """
    sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)


def binary_search(sorted_collection: list[int], item: int) -> int:
    """Pure implementation of a binary search algorithm in Python

    Be careful collection must be ascending sorted otherwise, the result will be
    unpredictable

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item value to search
    :return: index of the found item or -1 if the item is not found

    Examples:
    >>> binary_search([0, 5, 7, 10, 15], 0)
    0
    >>> binary_search([0, 5, 7, 10, 15], 15)
    4
    >>> binary_search([0, 5, 7, 10, 15], 5)
    1
    >>> binary_search([0, 5, 7, 10, 15], 6)
    -1
    """
    if list(sorted_collection) != sorted(sorted_collection):
        raise ValueError("sorted_collection must be sorted in ascending order")
    left = 0
    right = len(sorted_collection) - 1

    while left <= right:
        midpoint = left + (right - left) // 2
        current_item = sorted_collection[midpoint]
        if current_item == item:
            return midpoint
        elif item < current_item:
            right = midpoint - 1
        else:
            left = midpoint + 1
    return -1


def binary_search_std_lib(sorted_collection: list[int], item: int) -> int:
    """Pure implementation of a binary search algorithm in Python using stdlib

    Be careful collection must be ascending sorted otherwise, the result will be
    unpredictable

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item value to search
    :return: index of the found item or -1 if the item is not found

    Examples:
    >>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
    0
    >>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
    4
    >>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
    1
    >>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
    -1
    """
    if list(sorted_collection) != sorted(sorted_collection):
        raise ValueError("sorted_collection must be sorted in ascending order")
    index = bisect.bisect_left(sorted_collection, item)
    if index != len(sorted_collection) and sorted_collection[index] == item:
        return index
    return -1


def binary_search_by_recursion(
    sorted_collection: list[int], item: int, left: int = 0, right: int = -1
) -> int:
    """Pure implementation of a binary search algorithm in Python by recursion

    Be careful collection must be ascending sorted otherwise, the result will be
    unpredictable
    First recursion should be started with left=0 and right=(len(sorted_collection)-1)

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item value to search
    :return: index of the found item or -1 if the item is not found

    Examples:
    >>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4)
    0
    >>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4)
    4
    >>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4)
    1
    >>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4)
    -1
    """
    if right < 0:
        right = len(sorted_collection) - 1
    if list(sorted_collection) != sorted(sorted_collection):
        raise ValueError("sorted_collection must be sorted in ascending order")
    if right < left:
        return -1

    midpoint = left + (right - left) // 2

    if sorted_collection[midpoint] == item:
        return midpoint
    elif sorted_collection[midpoint] > item:
        return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
    else:
        return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)


def exponential_search(sorted_collection: list[int], item: int) -> int:
    """Pure implementation of an exponential search algorithm in Python
    Resources used:
    https://en.wikipedia.org/wiki/Exponential_search

    Be careful collection must be ascending sorted otherwise, result will be
    unpredictable

    :param sorted_collection: some ascending sorted collection with comparable items
    :param item: item value to search
    :return: index of the found item or -1 if the item is not found

    the order of this algorithm is O(lg I) where I is index position of item if exist

    Examples:
    >>> exponential_search([0, 5, 7, 10, 15], 0)
    0
    >>> exponential_search([0, 5, 7, 10, 15], 15)
    4
    >>> exponential_search([0, 5, 7, 10, 15], 5)
    1
    >>> exponential_search([0, 5, 7, 10, 15], 6)
    -1
    """
    if list(sorted_collection) != sorted(sorted_collection):
        raise ValueError("sorted_collection must be sorted in ascending order")
    bound = 1
    while bound < len(sorted_collection) and sorted_collection[bound] < item:
        bound *= 2
    left = bound // 2
    right = min(bound, len(sorted_collection) - 1)
    last_result = binary_search_by_recursion(
        sorted_collection=sorted_collection, item=item, left=left, right=right
    )
    if last_result is None:
        return -1
    return last_result


searches = (  # Fastest to slowest...
    binary_search_std_lib,
    binary_search,
    exponential_search,
    binary_search_by_recursion,
)


if __name__ == "__main__":
    import doctest
    import timeit

    doctest.testmod()
    for search in searches:
        name = f"{search.__name__:>26}"
        print(f"{name}: {search([0, 5, 7, 10, 15], 10) = }")  # type: ignore[operator]

    print("\nBenchmarks...")
    setup = "collection = range(1000)"
    for search in searches:
        name = search.__name__
        print(
            f"{name:>26}:",
            timeit.timeit(
                f"{name}(collection, 500)", setup=setup, number=5_000, globals=globals()
            ),
        )

    user_input = input("\nEnter numbers separated by comma: ").strip()
    collection = sorted(int(item) for item in user_input.split(","))
    target = int(input("Enter a single number to be found in the list: "))
    result = binary_search(sorted_collection=collection, item=target)
    if result == -1:
        print(f"{target} was not found in {collection}.")
    else:
        print(f"{target} was found at position {result} of {collection}.")
关于此算法

问题陈述

给定一个包含 n 个元素的已排序数组,编写一个函数来搜索给定元素(目标)的索引。

方法

  • 通过重复将数组分成两半来搜索数组。
  • 最初考虑实际数组并选择中间索引处的元素。
  • 保持较低索引(即 0)和较高索引(即数组长度)。
  • 如果它等于目标元素,则返回索引。
  • 否则,如果它大于目标元素,则仅考虑数组的左半部分。(较低索引 = 0,较高 = 中间 - 1)
  • 否则,如果它小于目标元素,则仅考虑数组的右半部分。(较低索引 = 中间 + 1,较高 = 数组长度)
  • 如果在数组中找不到目标元素,则返回 -(插入索引 + 1)(如果较低索引大于或等于较高索引)。一些更简单的实现如果找不到元素则只返回 -1。必须添加 1 的偏移量,因为插入索引可能是 0(搜索值可能小于数组中的所有元素)。由于索引从 0 开始,因此必须将其与目标元素具有索引 0 的情况区分开来。

时间复杂度

O(log n) 最坏情况
O(1) 最佳情况(如果初始数组的中间元素是目标元素)

空间复杂度

O(1) 对于迭代方法
O(1) 对于递归方法,*如果使用了尾调用优化*,否则由于递归调用栈,O(log n)

示例

arr = [1,2,3,4,5,6,7]  

target = 2
Initially the element at middle index is 4 which is greater than 2. Therefore we search the left half of the
array i.e. [1,2,3].
Here we find the middle element equal to target element so we return its index i.e. 1

target = 9          
A simple Binary Search implementation may return -1 as 9 is not present in the array. A more complex one would return the index at which 9 would have to be inserted, which would be `-8` (last position in the array (7) plus one (7+1), negated)`.

视频解释

一个 CS50 视频解释二分查找算法。

动画解释