from __future__ import annotations
from string import ascii_letters
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
Encodes a given string with the caesar cipher and returns the encoded
message
Parameters:
-----------
* input_string: the plain-text that needs to be encoded
* key: the number of letters to shift the message by
Optional:
* alphabet (None): the alphabet used to encode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the encoded cipher-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where every character in the plain-text is shifted by a certain number known
as the "key" or "shift".
Example:
Say we have the following message:
"Hello, captain"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
We can then encode the message, one letter at a time. "H" would become "J",
since "J" is two letters away, and so on. If the shift is ever two large, or
our letter is at the end of the alphabet, we just start at the beginning
("Z" would shift to "a" then "b" and so on).
Our final message would be "Jgnnq, ecrvckp"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> encrypt('The quick brown fox jumps over the lazy dog', 8)
'bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo'
>>> encrypt('A very large key', 8000)
's nWjq dSjYW cWq'
>>> encrypt('a lowercase alphabet', 5, 'abcdefghijklmnopqrstuvwxyz')
'f qtbjwhfxj fqumfgjy'
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# The final result string
result = ""
for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
# Append the encoded character to the alphabet
result += alpha[new_key]
return result
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
decrypt
=======
Decodes a given string of cipher-text and returns the decoded plain-text
Parameters:
-----------
* input_string: the cipher-text that needs to be decoded
* key: the number of letters to shift the message backwards by to decode
Optional:
* alphabet (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the decoded plain-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift". Please keep in mind, here we will be focused on
decryption.
Example:
Say we have the following cipher-text:
"Jgnnq, ecrvckp"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
To decode the message, we would do the same thing as encoding, but in
reverse. The first letter, "J" would become "H" (remember: we are decoding)
because "H" is two letters in reverse (to the left) of "J". We would
continue doing this. A letter like "a" would shift back to the end of
the alphabet, and would become "Z" or "Y" and so on.
Our final message would be "Hello, captain"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> decrypt('bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo', 8)
'The quick brown fox jumps over the lazy dog'
>>> decrypt('s nWjq dSjYW cWq', 8000)
'A very large key'
>>> decrypt('f qtbjwhfxj fqumfgjy', 5, 'abcdefghijklmnopqrstuvwxyz')
'a lowercase alphabet'
"""
# Turn on decode mode by making the key negative
key *= -1
return encrypt(input_string, key, alphabet)
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
"""
brute_force
===========
Returns all the possible combinations of keys and the decoded strings in the
form of a dictionary
Parameters:
-----------
* input_string: the cipher-text that needs to be used during brute-force
Optional:
* alphabet: (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
More about brute force
======================
Brute force is when a person intercepts a message or password, not knowing
the key and tries every single combination. This is easy with the caesar
cipher since there are only all the letters in the alphabet. The more
complex the cipher, the larger amount of time it will take to do brute force
Ex:
Say we have a 5 letter alphabet (abcde), for simplicity and we intercepted the
following message:
"dbc"
we could then just write out every combination:
ecd... and so on, until we reach a combination that makes sense:
"cab"
Further reading
===============
* https://en.wikipedia.org/wiki/Brute_force
Doctests
========
>>> brute_force("jFyuMy xIH'N vLONy zILwy Gy!")[20]
"Please don't brute force me!"
>>> brute_force(1)
Traceback (most recent call last):
TypeError: 'int' object is not iterable
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# To store data on all the combinations
brute_force_data = {}
# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)
return brute_force_data
if __name__ == "__main__":
while True:
print(f'\n{"-" * 10}\n Menu\n{"-" * 10}')
print(*["1.Encrypt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n")
# get user input
choice = input("\nWhat would you like to do?: ").strip() or "4"
# run functions based on what the user chose
if choice not in ("1", "2", "3", "4"):
print("Invalid choice, please enter a valid choice")
elif choice == "1":
input_string = input("Please enter the string to be encrypted: ")
key = int(input("Please enter off-set: ").strip())
print(encrypt(input_string, key))
elif choice == "2":
input_string = input("Please enter the string to be decrypted: ")
key = int(input("Please enter off-set: ").strip())
print(decrypt(input_string, key))
elif choice == "3":
input_string = input("Please enter the string to be decrypted: ")
brute_force_data = brute_force(input_string)
for key, value in brute_force_data.items():
print(f"Key: {key} | Message: {value}")
elif choice == "4":
print("Goodbye.")
break
凯撒密码是一种简单的密码,也是最著名的加密算法之一。它非常易于加密、解密和拦截。凯撒密码是一种替换密码,其中明文(解码文本)中的每个字母都被替换为字母表中该字母右侧一定数量的空格处的字母。(空格的数量称为密钥或移位,只有发送方和目标接收方知道)。
免责声明:不要尝试使用此密码加密个人数据或重要信息!!!计算机只需半秒钟即可破解!
n
。n
个字母的字母。(例如:对于密钥1
,a
将变为b
,z
将变为a
等。)n
为消息编码的密钥。n
个字母的字母。对于密钥1
,c
将是b
,a
将是z
。4. 消息现在应该已解码
假设我们要向朋友发送一条秘密消息。
The Caesar cipher is a fun substitution cipher
abcdefghijklmnopqrstuvwxyz
。在本教程中,大小写不敏感。(对于移位1
:A
将变为B
,a
将变为b
)T
。距离该字母 6 个字母的字母是 Z
。我们将 Z
添加到消息中。h
。距离该字母 6 个字母的字母是 n
。我们的消息现在是 Zn
Znk Igkygx iovnkx oy g lat yahyzozazout iovnkx.