The Algorithms logo
算法
关于我们捐赠

DBSCAN

H
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## DBSCAN\n",
    "This implementation and notebook is inspired from the original DBSCAN algorithm and article as given in \n",
    "[DBSCAN Wikipedia](https://en.wikipedia.org/wiki/DBSCAN).\n",
    "\n",
    "Stands for __Density-based spatial clustering of applications with noise__ . \n",
    "\n",
    "DBSCAN is clustering algorithm that tries to captures the intuition that if two points belong to the same cluster they should be close to one another. It does so by finding regions that are densely packed together, i.e, the points that have many close neighbours.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### When to use ?\n",
    "\n",
    "1. You need a robust clustering algorithm.\n",
    "2. You don't know how many clusters there are in the dataset\n",
    "3. You find it difficult to guess the number of clusters there are just by eyeballing the dataset.\n",
    "4. The clusters are of arbitrary shapes.\n",
    "5. You want to detect outliers/noise."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Why DBSCAN ? \n",
    "\n",
    "This algorithm is way better than other clustering algorithms such as [k-means](https://en.wikipedia.org/wiki/K-means_clustering) whose only job is to find circular blobs. It is smart enough to figure out the number of clusters in the dataset on its own, unlike k-means where you need to specify 'k'.  It can also find clusters of arbitrary shapes, not just circular blobs.  Its too robust to be affected by outliers (the noise points) and isn't fooled by them, unlike k-means where the entire centroid get pulled thanks to pesky outliers. Plus, you can fine-tune its parameters depending on what you are clustering.\n",
    "\n",
    "#### Have a look at these [neat animations](https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/) of DBSCAN to see for yourself."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First lets grab a dataset\n",
    "We will take the moons dataset which is pretty good at showing the power of DBSCAN. \n",
    "\n",
    "Lets generate 200 random points in the shape of two moons"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.datasets import make_moons\n",
    "\n",
    "x, label = make_moons(n_samples=200, noise=0.1, random_state=19)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Visualize the dataset using matplotlib\n",
    "You will observe that the points are in the shape of two crescent moons. \n",
    "\n",
    "The challenge here is to cluster the two moons. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x11a00e588>]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2df5AlV3XfP2dnZ4QWsLX7VsZroZmViAIWToxhIoNMUcIQkFUpLSkrFeHRejGixlrFKVwpUqxqEyelZMv8qApgEyFvFJmFmUgCYjuKC0WWQIQ/jAQjol+grLRapEUqGVa7WLAlh5VWN390P03Pm/75+tft199PVdfrH7e7b9/Xfc+955x7rjnnEEII0V82tJ0BIYQQ7SJBIIQQPUeCQAgheo4EgRBC9BwJAiGE6DkSBEII0XMqEQRmdqOZ/dDMHko4vmBmD5jZg2b212b2y5Fjj4f77zOzlSryI4QQIj9WxTgCM3sbcAL4nHPul2KOXwg87Jz7kZn9BvDvnXO/Gh57HJh3zj2T935bt25127dvL51vIYToE/fee+8zzrkzR/dvrOLizrmvm9n2lON/Hdm8G3h1mftt376dlRV1HoQQoghm9kTc/jZsBFcCt0W2HfBXZnavmS22kB8hhOg1lfQI8mJmbycQBG+N7H6rc+4pM/s54A4z+7/Oua/HnLsILALMzs42kl8hhOgDjfUIzOwfAjcAO5xzx4b7nXNPhb8/BP4cuCDufOfcfufcvHNu/swz16m4hBBCjEkjgsDMZoE/A3Y65x6J7H+5mb1yuA68C4j1PBJCCFEPlaiGzOwm4CJgq5k9Cfw7YBrAOXc98AfAALjOzABecM7NA68C/jzctxH4b865/1VFnoQQQuSjKq+h92Yc/wDwgZj9h4FfXn+GEDWwvAx798KRIzA7C/v2wcJC27kSonUaNRYL0RrLy7C4CM89F2w/8USwDRIGovcoxIToB3v3rgqBIc89F+wXoudIEIh+cORIsf1C9AgJAlE/y8uwfTts2BD8Li83n4eksScakyKEBIGomaFu/oknwLlV3XxRYVBWmOzbB5s2rd23aVOwX4ieI0Eg6qUK3XwVwmRhAfbvh7k5MAt+9++XoVgIKoo+2jTz8/NOQec6woYNQeU9ihm8+GK+a2zfHlT+o8zNweOPl8mdEL3CzO4Nx3CtQT0CUS9V6OZl6BWiViQIRL1UoZuXoVeIWpEgEPVShW5ehl4hakWCQATU6eK5sBDo8l98MfgtaqD10dDrg0usEBUhQSCqc/Gsk6gw2bcv8DpqqxLuQnkJUQAJAtGt8AtxlfAVV8DWrfVUxHEt/y6VlxA5kPuoqMbFsymSXEkhsBtUqTIaDVQ3vMeoEBjiY3kJEUHuoyKZLnnlpLmMVt0qT2r5T03Fp/exvITIgQSBqNYrp24jalZlW+XYgqRrnTolLyYxUUgQiOq8csY1ohYRHnFCK8qWLcXynEaS0BmWj09eTEKUwTnXueVNb3qTEx6xtOTc3JxzQfW/fpmbSz9306a16TdtCvannbNhQ/y9BoN8eTULfrPuUzRvQngMsOJi6tRKKmbgRuCHwEMJxw34I+AQ8ADwxsixXcCj4bIrz/0kCDwirrIcXcySz08SIGnCw7ngmkXvNa7QySs4hPCcugXB24A3pgiCS4DbQoHwZuCecP8W4HD4uzlc35x1PwkCj0jrCeSp1NMq9LRKeBwBMq7QEWJCSBIEldgInHNfB46nJNkBfC7My93AGWa2DXg3cIdz7rhz7kfAHcDFVeRJNESWcTbLiJqkh9+yJd3eMI6BW8HrhIilKWPxWcD3I9tPhvuS9ouukObFk8eImlShQ/qgrXEM3El5dU5hIkSv6YzXkJktmtmKma0cPXq07eyIIUkV+dJSvrhCSRX68YQOZrT1XjSGUZrHkcJEiB7TlCB4Cjg7sv3qcF/S/nU45/Y75+adc/NnnnlmbRkVBanC9TSuQq9jkFs0r3E89xzs3Bk8h1l9YSuE8IymBMGtwG9bwJuBZ51zTwO3A+8ys81mthl4V7ivn3Q1omXZ6KJx1BV6ephXs/jjLhJq49gxeP/7u/M/CDEmlQgCM7sJ+AbwWjN70syuNLOrzOyqMMmXCTyCDgH/BbgawDl3HPgPwLfC5dpwX/9QRMu11B16Om/P4uRJBZMTE4+CzvlCH+blHUbuPHIkqIj37WtvNG5cQLkkFExOTAgKOuc7k+7a6EuPZ6h+27kTTj8dBoOgok8KJAcKJicmHgkCX+hSBNBx8CGG/6gwOnYM/u7v4Kqr4Iwz4s+ZmSlml+iqnUf0GgkCX2hiXt64Siqt4qqyUvOhx5MkjD7zmUAojDIYwI035ldf+dLrEaIoccONfV8mNsRE0YBoRWLgxMXZmZ52bmYmPvZO1QHXfAjvkBTOoqp8+fCMQqRAQogJGYu7SNLMWWleNWkze40y9LOv0ng9Tp6rpkgZjGMg7tJMb6KXyFg8SYyjby+igjlypHpVTt3uoHkoomYbxzYz6XYeMbFIEHSRcSrpIpXR7Gx6pTau7aCOgWdFWFgI9P5ZjGubacLOI0QNSBB0kXFannGV1PR04BUTZVhxJVVql1zSbYPopz61/rlmZlbdSMv0VHzo9QgxDnGGA9+XiTUW52VcQ26cgTnN6Bx3bBIMoppsRvQU6pyPQDTMuC3PUdUMrB/pC6tqnw9+EE6cWHsNH9xAy9K2ikoIz5DXUF+J8+KZmQna988/H3/Opk3BaNw4n/tJCoVRNz6F2hC9Ql5DPuDTqNM4z6OTJ5OFAKyml0F0fMYZdObTeyMmkzh9ke9LJ20EVQ/QyrpXlg68yOCqInMJTxpV2FWiFLWx7N69/r+q670REw91Tl7f9NJJQdCUkTWvwMkz6XzXjcJliSvLmZlgRPa4o7GTBLBZ/P2T0vfpfxCVkSQIZCNoiqZGnSaNnp2aggMHVnXR49oI+uQOWcdo7CLhxtPur9HKYgxkI2ibpkadJnnvnDq1Vhcd53l0443wp3+6um8wqMa/PkqX9N11jMYuMuisqgGCQmQR103wfemkaqgpG0GWyqeISqFqW0CTdpIqKKI+m5vLr/7LW65p9x8M+mGjEZWCxhG0TFOjTuNanFHytnLrCKnsw5wERYgry5mZYER2lKzR2ON6VCX9lxs3Bi68Vf0vQsRJh6ILcDFwkGBO4j0xxz8B3BcujwB/Gzl2KnLs1jz362SPoEmWlpybmirXI6jDuF3EUOoLVXsNpfWK8txrMKj+fxG9gbq8hoAp4DHgXGAGuB84PyX9vwRujGyfKHrP3guCPKqFsmqYOirtSQhPUZakMhgM8v1fXRSmwhuSBEEVqqELgEPOucPOuZPAzcCOlPTvBW6q4L7+U4dhNK/Kpqwqqg7jtqJzJqvmjh3LpzZTqGtRB3HSocgCXAbcENneCXw6Ie0c8DQwFdn3ArAC3A28J+U+i2G6ldnZ2TqFZjXUZRj1bTzCONdtajCajwPfio7fGG3pd83gLryCGlVDRQTBh4E/Htl3Vvh7LvA48Jqse3qrGopWPGV19Ek0qRrwsSLNi68VZlK+iuj+u/y/iFapUxC8Bbg9sn0NcE1C2v8DXJhyrc8Cl2Xd00tBEPeB11FhS8+eD5/LKcko7KPgEhNFkiCowkbwLeA8MzvHzGaAy4FbRxOZ2euAzcA3Ivs2m9lp4fpW4NeA71aQp+aJc42Mo6wuV3r2fPgcLjsuDLYmtREtUloQOOdeAH4PuB14GPiCc+47ZnatmV0aSXo5cHMolYb8IrBiZvcDdwEfcc51UxDkqWCqqLBVYeSjbaNqXkeBaLq9e4P3o+g8CV0arS38JK6b4PvipWooSRUxNZXt5lmXvrfPuuQ2VS15711FHqVSEgVA0UdrZpwPMuucMhW5Koj2BGFe+0QVdow81+hzg0CsQYKgCYp+cGkfcdmK3Gdj6aST17OrCg+wrGuoQSAiJAkChaFuk7TQ1LOz+cMVF722whfXS95Q00VCUo97ryruISYGhaH2jeXloLKOY3a2vNdL28bSPpPXs6sKD7Csa/jsPSW8QYKgCop6bQzDRJw6tf7Y8CMuW5HLzbQ98np2VeEBlnUNNQhEHuL0Rb4vXtkIxtHBpnkYRQ3FVXiUyEjYb2QjEBGQsbgmihpll5bi08cZCVWRiyzyRqLVeyRcsiCQsbgsRYyycfMER5EBTxQh7n3q27zSohAyFtdFER1sWhgK6e9FUbJmfNOIY5ETCYKyVDUZuVpxIo60yjzNI6iOqUbFxCJBUJYinh9JvYe5OQmBIWrFrpJVmaf1Rrs2P7RolzjDge+LV8biIsiDIx2Vz1qyHBHiysvMud27NaWliIUaw1CLvChyaDpqxa4lazDYwgLs2hW8S0OcgwMHYMuW+HOLjB9Q76xZWizvjY3dSQQMY8+L9WgU7FqSwoxEK/Mvf3m919pzz8Hppwe2qlGPorwOCaMeSUO1FOj9rYOWy1s9grpQayqb0TKqohU7SeRxREgSksePl+t9qnfWLG17gMXpi3xfvLcRSNedTVwZzcw4Nz2dXW59GiCV9ax1RZmVjaFZ0sq7wvoEjSyuibgPVSGgs0kqo8EgveKTkF1LXeWhd7hZ0sq7wv+iVkEAXAwcBA4Be2KOvw84CtwXLh+IHNsFPBouu/LczxtBkPQR5g0h0WfGbXGqglpPHT0kCdxmSSvvCntntQkCYAp4DDgXmAHuB84fSfM+4NMx524BDoe/m8P1zVn39EYQpAWPU2WVzrgVulQW1ZMkSPqkgvOBpPJuoEdQhbH4AuCQc+6wc+4kcDOwI+e57wbucM4dd879CLiDoHfRDZIMdadOKQR0FuOGyVZY5WpJG7S2sBDEvnrxxeA3zdAs54jyJJV3AyHlqxAEZwHfj2w/Ge4b5TfN7AEz+5KZnV3wXD9JGyms8QLpjDumQvMsVEsV3kEKZ1EvTYw/iusmFFmAy4AbIts7GVEDAQPgtHD9d4GvhusfAv5NJN2/BT6UcJ9FYAVYmZ2dLdwlyk2R7nAePaq619WjMq2OKlRtstt0Bmq0EbwFuD2yfQ1wTUr6KeDZcP29wJ9Ejv0J8N6se9ZmIxjHQJZWKcngJnynikpcdpvOkCQIqlANfQs4z8zOMbMZ4HLg1mgCM9sW2bwUeDhcvx14l5ltNrPNwLvCfe1Q9SCaotfrq561r8/tA1Wo2mS3yYfP73mcdCi6AJcAjxB4D+0N910LXBqu/yHwHQKPoruA10XOfT+B2+kh4Hfy3K+2HkHRlk1Wi7/I9frae+jrc1dFFWqystfQf5iNJ2WEBpTloGg3OSt9kev1Vc/a1+euAk8ql5fyIrtNMp6850mCQFNVRik69V/WNJVFrldkystJoq/PXQXbt8cHpdOUp/7hyXuuqSrzUNRNKytIWhWT1ky6nrWvz10FitbaHTx/zyUIRsk7iGZ5GX7yk/X7p6fXGtryXq+v/vF9fe4q8LxyERF8f8/j9EW+L42GmCg67HswqP5ek05fn7ssPtkIRDYevOfIRjAGaTr+nTu90PmJnrO8HLgjHzkS9AT27dMIdpGIbATjkDYOQN1y4QNF4gHFMY5vu8/+8HUyyc8d103wfWlMNdTQZBFCtMK4I+n7+N5PyHOjcQRjkOX764HOT4TovyjOOL7tnvjDN86EPHeSIJBqKI0sS3/ZbrlYz7iqCkW/TCeuXMdxP+2ry2rZ5/ZdrRQnHXxfvPAaEtUzbvd7QlprtbF793o1p5lzL3+5egR5Gfe5l5YCT8LR81pSKyHVkPAezVpWPWlTHYJz09PFKqg4YT10m57kRtI4Ied3706furYF4SlBIPwnb4U++sHFtbj60ErNQ5JwjVbgRXu8nrVyG6NoyPk0AdxSQyVJEGgcgWiOLJ/3pNg5r3gFDAbBeVu2wI9/DM8/v3p8ejoYv3Hy5Oq+tBhRfSIpxs2Qcce9KM7RWpLKI40WykrjCMbFdyNPV8hj0N23D2Zm1p974sTqeceOrRUCEGy/8pWaGjSOrHEt44576avROImiz+1TeAmQaiiVCfEd9oK8+v8kNU/WIntAPEk6/bLvcl+NxkkklUeceqhFewpyHx2Dqmcs6zN5W5DHj493fY3ojicaARdgair4HfaaYLwer+9B1JomqTyuumptT3VpCZ55xr/eapx08H3xYmSxKEbeFmSWcbPqlm2fKdvjlWv1WjpQHshYPAYyiFVH3kl64tKNMjMT2ASOH1egtTLo/e4dtRqLzexiMztoZofMbE/M8X9lZt81swfM7CtmNhc5dsrM7guXW0fPbRV1f6sj7yQ9cel27167feONQfdaI7rLIYPveEyiA0lcN6HIAkwRTFp/LjBDMEH9+SNp3g5sCtd3A7dEjp0oek+NLBaiAmTwLU7HHUio0Vh8AXDIOXfYOXcSuBnYMSJs7nLODfv6dwOvruC+zaB4QmJSUY+3OEUdSDrSe6hCEJwFfD+y/WS4L4krgdsi2y8zsxUzu9vM3lNBfvykIy+E6BFF5+gWxdRpHQqG2Kj7qJldAcwDH4/snnOB8eK3gE+a2WsSzl0MBcbK0aNH68tkHRV2h16ITiChWh3q8eZneTl45+KIc1/ukvt5nL6oyAK8Bbg9sn0NcE1MuncCDwM/l3KtzwKXZd2zNhtBnP5vejoYAFLGRiBdbHWME/yrI/pb4TF5BuaNvnceDn6krqBzwEbgMHAOq8bi14+k+RUCg/J5I/s3A6eF61uBRxkxNMcttQmCPD7s4xiGNB6hOvJMFtRhY14jSFAWJ+m9m5paFQJ5g8612ACsTRAE1+YS4JGwst8b7rsWuDRcvxP4AXBfuNwa7r8QeDAUHg8CV+a5X22CICtaYNIfmfVhqUdQHVlCVWWdjgTleIz73o0uMzOtlnWtgqDppdUewWhLPq+qQh9fNWRV9GnCXOUtQTkuZd676DI97aUgUKyhKHHudHFEDUN5DELyzqiOLJfHtJhDMtBrENk4LC8HEXBHyfveRXn++ck0Frex1DqgLKrmGQyCrtyoVI9GD5T+v3mKThCilu8q6hEUI++MbFnvnSd1A1INjUHSTExR1Y4+LP9YWvLyI2ycOIEpNWUxinzfHZg5T4KgKHkk/PDj0oflH30X0GnvpbyG8lOmx+9h3SBBUJS8hmN9WH7i4UfYKGnujnpP81O2QeFZ3SBBUJS8XgB9qly6hmcfYaPkeX/17mYzYQ2KJEGg+QiSKDIZteK3C9/I+/7q3c1meTnw9DlypPPzX2jy+qLkdSUFud4J/8j7/urdzaYH8ZgkCJKI8/0fDOLTbtnSbN6EyGL4/g7nKE5Ccz0LJAjSGW0JfOpTMD29Pt1PfqKBSsI/FhaCdzcJzT0gQiQIirCwAD/zM+v3nzzp52hBIZJa/FNTGt0uXkKCoCjHj8fvl65V+EhSSI4DByQExEtIEBQlqYUlXWu7aLKaeBTnql2uvho2bgzKfuPGYNtDJAiKonle/SNuBrgrroCtWyUQoBdeL15y9dXwmc/AqVPB9qlTwbaHwkCCoChqYflHXARYgGPHFHG0COpVVcv+/cX2t0h/BEGVL7laWH6RZp/xdY5Y39C82tUz7Ank3d8i/RAEesknmyz7jAz52XRpovWukDSGI2tsRwv0QxDoJe8+aT26rFG0MuRnowlrqmdxsdj+FqlEEJjZxWZ20MwOmdmemOOnmdkt4fF7zGx75Ng14f6DZvbuKvKzDr3k3SarRze028SN/JYhPx/yhque666D3btXewBTU8H2dde1m6844iLRFVmAKYJJ688FZggmoj9/JM3VwPXh+uXALeH6+WH604BzwutMZd2zcPTRvsem7zplJgfpaJTIxpmwKJsiHmqcs/gC4JBz7rBz7iRwM7BjJM0O4EC4/iXgHWZm4f6bnXM/dc59DzgUXq9a5PLZbYr06GTIH48i3nDyLkqmo2WzsYJrnAV8P7L9JPCrSWmccy+Y2bPAINx/98i5Z8XdxMwWgUWA2aLd1eHLPCGhZHvH7Gx8SGWpLaplYSH7mxiq6YY2t6Gabnh+n+lw2XTGWOyc2++cm3fOzZ955pnFL6CWYncZt0fX0dZZpVRdBnK8SC7TDpdNFYLgKeDsyParw32xacxsI/CzwLGc57aHKhI/GGcQn1yG6ymDvjtepJVpl8smznBQZCFQLx0mMPYOjcWvH0nzL1hrLP5CuP561hqLD1OHsXgcZDzzlzwGYTkI1FMGfSnXpHcs7fk7UDbUOWcxcAnwCIHXz95w37XApeH6y4AvEhiDvwmcGzl3b3jeQeA38tyv1cnrPfpTe0leAZ00Z69ZO/lugzrKoA8NpLRnTCvTDpRNrYKg6aXVyev7VJH4SF4BLUFeXxlMsovu0pJzU1PJ5ZZVpp6XjQRBUVSR+EleAd2B1lntqAyKEVdebbX6axIoEgRF0UfkJxpcVgyVQX6S3q0irf4qyrvGukeCYBz0EfnHOB+J/keRh6Te5rA3MBQGSe9PVRV4jdoICQIxOQwrdljV5yZ9oOrZibxk9Qiy3p+qKvAa7ZNJgqAzA8qEeImFhdVBZsPY7kk+8kUG+WjcSD8Z/u9PPBGMU4kyug3J709V4whaCAAoQSC6SVoFH63Q40JTwPqPUwPQ+kn0f4fgvx9W/nNzwXYccZV70Qo8qeHRRmy0uG6C74tUQz0jTsefps9N8/yQu6mIkvW/F3VOyKuGzEorryEJAhEh6YMZDOI/0CQf8KyPU+NG+knW/17UxpS3Am+p4ZEkCKQaEn6TpAKC+O5z2nywaXGKNDFLP8n634vGucob3NKzuEQSBMJvkj6M48fjP9C5ufj0c3PpH6fmrOgnef73OiIXe9bwkCAQfpP2wcR9oONW6AsLsGvX2mkFd+1SuPJJJ0+Lvw5vMt8aHnH6It8X2Qh6RFMDyDTeQMRR53vRwkBHZCwWnaWJD0ZeQ37hy2jwCXsvkgSBVEPCf5qYXS7NeKeBZs3i05gOz4y6dSFBIAQk2yK2bPGnUuoLbUz5mCTsPTPq1oUEgRCQbLyDzs5D21maboWn9UB8M+rWhASBEJDsPXL8eHz6rqoG6lZzVXH9plvhaT2QcebL7iJxhoO8C7AFuAN4NPzdHJPmDcA3gO8ADwD/PHLss8D3gPvC5Q157itjscikKmPjJBkL6/aMqur6TXtw9WhUOXV4DQEfA/aE63uAj8ak+fvAeeH6LwBPA2e4VUFwWdH7ShCIVKqsSCbJrbRuoVbl9Zv0GpokYZ9BXYLgILAtXN8GHMxxzv0RwSBBIKqn6g/bF1fGstTd8u1qy7queEIekiQIytoIXuWcezpc/xvgVWmJzewCYAZ4LLJ7n5k9YGafMLPTSuZHiOqNjU24rzZB3br3rnrYFLED+OTaWiGZgsDM7jSzh2KWHdF0obRxKdfZBnwe+B3n3Ivh7muA1wH/iMDe8OGU8xfNbMXMVo4ePZr9ZKK/NFkhdWmMQd0eMF32sMkr7NtwbW2CuG5C3oWcqiHgZ4Bvk6IGAi4C/jLPfaUaEqk0pdfvov2gbrVGh9Umueiq+iuEmmwEH2etsfhjMWlmgK8Avx9zbChEDPgk8JE895UgEJm0GZZiaI+YtEqwSXwVKB03LNclCAZhJf8ocCewJdw/D9wQrl8BPM+qi+hLbqLAV4EHgYeAJeAVee4rQSC8IG2WtC70DnzF556Wz3nLQS2CoK1FgkDkps6WZVqPoM6Woq+t5arwvdXd4fKXIBD9o40BVHXrjjveIs1FU3r4Dlfo45IkCCw41i3m5+fdyspK29kQvrN9e+DeN8rcXOAZUgXLy8EENklTZFZ5L2jmmdqmqf9tcXGtB9CmTZMZPiKCmd3rnJsf3a9YQ2JyaSJ42cJC4HKYRNWuk30Ii1yFG2qWW++kuoGOiQSBmFyaGk+QdL3BYLzWZVol1tVBW0UoG+gtz6CvPgjUIsTpi3xfZCMQufBtPEEenXTWtSbFRtCGET9qbPbdIF0TyFgseklTBsGs++StwPNUUG0bOcvevw5hFs1THsP9pAjUgkgQCNEmeVugaRWZDx4uVVSgdQQFzPLeirv+qEDbvduPMq6RJEEgryEhmmDDhqA6GsVsrbE5yWPGbO35bXm4VOHRk7csyuYpSlZ59cSLSF5DQozSZMC4JGPuhg1r7xvnMTMqBKA9D5ckY2pWRRylaoN3moE3r7G5515EEgSin+TxLKlSUMRV8BCMP4jeN85jJqnX3oaHS1JlbZZePtGyPHECpqfXHi8TpTQpT3Nza6OJpv2fffciitMX+b7IRiBKk6WnLqMLTzKmLi05NzVVXD/uk4fL0lKyHSMpP3FlOTPj3GBQjT4+z3+VlcanMq4RZCwWIkJWGINxK4asCmec8Alte7iMCrY0r5w4IdhEJZvmyZRHALddxg0hQSBElKzKadx4N1nXLSNgini0VOViGldBJpXNYBBfmaYJjrrJ8igadSntqddQ65X6OIsEgShNXaqCLAHSRMuzynsklcPoc27aFAiCPGnrVLuMVuZJeaozDx4jQSDEKFnqhHEqUx8GhFWlillayq5Eo8+QNT9DdJmebmaEd9oygaqfLCQIhCjKOBW2D7rmKlQxWZVqnFDJMz9DVI1UNUXuPzXVOyHgXLIgkPuoEEnkndB89JwyAdPKsrwc3DeOIn76cX71Q5JcPZNcZOM4fjx/XvKS19Vz0yY4cGCiBoqVRYJAiKoZR4CkUWQ8w969QZt3FLNifvpplerpp8POnevzEicEB4P4a9QRLTUtCmxbgrkrxHUT8i7AFuAOgjmL7wA2J6Q7xep8xbdG9p8D3AMcAm4BZvLcV6oh0RuKqprS9PTD6+VRdxUxEqepWOoeQ5B1rx7aAdKgpsnrPwbsCdf3AB9NSHciYf8XgMvD9euB3XnuK0EgOkUZ43BRw29a+iIVZVG30bzPPxgEhuK6KuseuICWoS5BcBDYFq5vAw4mpFsnCAADngE2httvAW7Pc18JAtEZyrZSi45nSLtfUaGSdyAZ5H+enozg9ZUkQVAq+qiZ/a1z7oxw3YAfDbdH0r0QqoVeAD7inPsLM9sK3O2c+3thmrOB25xzv5R1X0UfFZ2hbLTOcc5fXg5sBUeOBHrzffsCnXjZqJ9pUfYM6NoAAAehSURBVD7zPk/VkUdFIcaOPmpmd5rZQzHLjmi6UNokSZW58Oa/BXzSzF4zxgMsmtmKma0cPXq06OlCtEPZYGZF5+9NEgJQPupnmrE57/P0YarNLhLXTci7kFM1NHLOZ4HLkGpI9IEqVCGjOvYkQ2sT01wmjdTN+zxNjayWnSAWarIRfJy1xuKPxaTZDJwWrm8l8DA6P9z+ImuNxVfnua8EgegMVVZ8VYTF8GGayai9YhgMrqoKW55DqdQlCAbAV8LK/U5gS7h/HrghXL8QeBC4P/y9MnL+ucA3CdxHvzgUGFmLBIHoFEUq37S0dQXKq/N50q5RR4UtY3QqSYJAU1UK4QtXXw3XX7/WmBqdLjHL0FrFNJJNUVdeZYxORVNVCuEzy8vrhQCsnS4xy9Ba1LDcJnXNCCZj9FhIEAjhA0mhIWC1csyq6NuOc1SEuirsLglDj5AgEMIH0lrCw8oxT0VfdZyjuqirwu6SMPQICQIhfCBtUvho5diVij5KXNC8OivsLpZRy2xsOwNCCILKfnFxbehnM7jqqm5XZMvLa5/riSeCbQieq8vPNkGoRyCED8S1kD//ebjuurZzVo64eQ2iBnDhBXIfFULUh9w5vULuo0KI5pE7ZyeQIBBC1IfcOTuBBIEQoj7kztkJJAiEqIIi8wr3Dblzeo/cR4UoS5aLpBCeox6BEGWRi6ToOBIEQpSlrgBqQjSEBIEQZZGLpOg4EgRClEUukqLjSBAIURa5SIqOI68hIapAAdREhynVIzCzLWZ2h5k9Gv5ujknzdjO7L7L8PzN7T3jss2b2vcixN5TJjxBCiOKUVQ3tAb7inDuPYBL7PaMJnHN3Oefe4Jx7A/DrwHPAX0WS/OvhcefcfSXzI4QQoiBlBcEO4EC4fgB4T0b6y4DbnHPPZaQTQgjREGUFwaucc0+H638DvCoj/eXATSP79pnZA2b2CTM7rWR+hBBCFCTTWGxmdwI/H3NozbBJ55wzs8TJDcxsG/APgNsju68hECAzwH7gw8C1CecvAosAs/LPFkKIyig1MY2ZHQQucs49HVb0X3POvTYh7QeB1zvnFhOOXwR8yDn3T3Lc9yjwxNgZL8dW4JmW7l2GruYbupt35bt5upr3pvI955w7c3RnWffRW4FdwEfC3/+Rkva9BD2AlzCzbaEQMQL7wkN5bhr3IE1hZitxM/z4TlfzDd3Nu/LdPF3Ne9v5Lmsj+Ajwj83sUeCd4TZmNm9mNwwTmdl24Gzgf4+cv2xmDwIPEkjE/1gyP0IIIQpSqkfgnDsGvCNm/wrwgcj248BZMel+vcz9hRBClEchJoqzv+0MjElX8w3dzbvy3TxdzXur+S5lLBZCCNF91CMQQoieI0GQgZn9MzP7jpm9aGaJVn0zu9jMDprZITNbF2qjafLEgQrTnYrEerq16XyO5CW1DM3sNDO7JTx+T+iE0Do58v0+MzsaKecPxF2naczsRjP7oZnFeutZwB+Fz/WAmb2x6TzGkSPfF5nZs5Hy/oOm8xiHmZ1tZneZ2XfDOuWDMWnaKXPnnJaUBfhF4LXA14D5hDRTwGPAuQSD4+4Hzm853x8D9oTre4CPJqQ70XYZ5y1D4Grg+nD9cuCWjuT7fcCn285rTN7fBrwReCjh+CXAbYABbwbuaTvPOfN9EfCXbeczJl/bgDeG668EHol5V1opc/UIMnDOPeycO5iR7ALgkHPusHPuJHAzQRymNikaB6pt8pRh9Jm+BLwjHIPSJj7+97lwzn0dOJ6SZAfwORdwN3BGOHC0VXLk20ucc087574drv8EeJj13pStlLkEQTWcBXw/sv0kMe6yDZM3DtTLzGzFzO4ehgdviTxl+FIa59wLwLPAoJHcJZP3v//NsKv/JTM7u5mslcbH9zovbzGz+83sNjN7fduZGSVUa/4KcM/IoVbKXBPTkB5PyTmXNlq6VSqKAzXnnHvKzM4FvmpmDzrnHqs6rz3nfwI3Oed+ama/S9Cr0Ria+vg2wXt9wswuAf4COK/lPL2Emb0C+O/A7zvnftx2fkCCAADn3DtLXuIpgpHTQ14d7quVtHyb2Q8iITy2AT9MuMZT4e9hM/saQSulDUGQpwyHaZ40s43AzwLHmsleIpn5dsHAyyE3ENhvukAr73VZopWrc+7LZnadmW11zrUeg8jMpgmEwLJz7s9ikrRS5lINVcO3gPPM7BwzmyEwZLbqgcNqHChIiANlZpuHob/NbCvwa8B3G8vhWvKUYfSZLgO+6kILW4tk5ntEx3spgW64C9wK/HboyfJm4NmIutFbzOznh7YjM7uAoJ5ru8FAmKf/CjzsnPtPCcnaKfO2Lem+L8A/JdDT/RT4AXB7uP8XgC9H0l1C4AXwGIFKqe18DwhmjXsUuBPYEu6fB24I1y8kiPN0f/h7Zct5XleGBGHJLw3XXwZ8ETgEfBM4t+1yzpnvPwS+E5bzXcDr2s5zmK+bgKeB58N3/ErgKuCq8LgB/zl8rgdJ8JrzMN+/Fynvu4EL285zmK+3Ag54ALgvXC7xocw1slgIIXqOVENCCNFzJAiEEKLnSBAIIUTPkSAQQoieI0EghBA9R4JACCF6jgSBEEL0HAkCIYToOf8fbbT41ArTNJwAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(x[:,0], x[:,1],'ro')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Abstract of the Algorithm\n",
    "The DBSCAN algorithm can be abstracted into the following steps:\n",
    "\n",
    "- Find the points in the $ε$ (eps) neighborhood of every point, and identify the core points with more than <b>min_pts</b> neighbors.\n",
    "- Find the connected components of core points on the neighbor graph, ignoring all non-core points.\n",
    "- Assign each non-core point to a nearby cluster if the cluster is an $ε$ (eps) neighbor, otherwise assign it to noise.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preparing the points\n",
    "Initially we label all the points in the dataset as __undefined__ .\n",
    "\n",
    "__points__ is our database of all points in the dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "points = { (point[0],point[1]):{'label':'undefined'} for point in x }"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Helper functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def euclidean_distance(q, p):\n",
    "    \"\"\"\n",
    "        Calculates the Euclidean distance\n",
    "        between points P and Q\n",
    "    \"\"\"\n",
    "    a = pow((q[0] - p[0]), 2)\n",
    "    b = pow((q[1] - p[1]), 2)\n",
    "    return pow((a + b), 0.5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def find_neighbors(db, q, eps):\n",
    "    \"\"\"\n",
    "        Finds all points in the DB that\n",
    "        are within a distance of eps from Q\n",
    "    \"\"\"\n",
    "    return [p for p in db if euclidean_distance(q, p) <= eps]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_cluster(db, clusters):\n",
    "    \"\"\"\n",
    "        Extracts all the points in the DB and puts them together\n",
    "        as seperate clusters and finally plots them\n",
    "    \"\"\"\n",
    "    temp = []\n",
    "    noise = []\n",
    "    for i in clusters:\n",
    "        stack = []\n",
    "        for k, v in db.items():\n",
    "            if v[\"label\"] == i:\n",
    "                stack.append(k)\n",
    "            elif v[\"label\"] == \"noise\":\n",
    "                noise.append(k)\n",
    "        temp.append(stack)\n",
    "\n",
    "    color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters))))\n",
    "    for i in range(0, len(temp)):\n",
    "        c = next(color)\n",
    "        x = [l[0] for l in temp[i]]\n",
    "        y = [l[1] for l in temp[i]]\n",
    "        plt.plot(x, y, \"ro\", c=c)\n",
    "\n",
    "    x = [l[0] for l in noise]\n",
    "    y = [l[1] for l in noise]\n",
    "    plt.plot(x, y, \"ro\", c=\"0\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Implementation of DBSCAN\n",
    "\n",
    "Initialize an empty list, clusters = $[ ]$ and cluster identifier, c = 0\n",
    "\n",
    "1. For each point  p in our database/dict  db :\n",
    "\n",
    "    1.1 Check if p is already labelled. If it's already labelled (means it already been associated to a cluster), continue to the next point,i.e, go to step 1\n",
    "    \n",
    "    1.2. Find the list of neighbors of p , i.e, points that are within a distance of eps from p\n",
    "    \n",
    "    1.3. If p does not have atleast min_pts neighbours, we label it as noise and go back to step 1\n",
    "    \n",
    "    1.4. Initialize the cluster, by incrementing c by 1\n",
    "    \n",
    "    1.5. Append the cluster identifier c to clusters\n",
    "    \n",
    "    1.6. Label p with the cluster identifier c\n",
    "    \n",
    "    1.7 Remove p from the list of neighbors (p will be detected as its own neighbor because it is within eps of itself)\n",
    "    \n",
    "    1.8. Initialize the seed_set as a copy of neighbors\n",
    "   \n",
    "    1.9. While the seed_set is not empty:\n",
    "        1.9.1. Removing the 1st point from seed_set and initialise it as q\n",
    "        1.9.2. If it's label is noise, label it with c\n",
    "        1.9.3. If it's not unlabelled, go back to step 1.9\n",
    "        1.9.4. Label q with c\n",
    "        1.9.5. Find the neighbours of q \n",
    "        1.9.6. If there are atleast min_pts neighbors, append them to the seed_set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def dbscan(db,eps,min_pts):\n",
    "    '''\n",
    "        Implementation of the DBSCAN algorithm\n",
    "    '''\n",
    "    clusters = []\n",
    "    c = 0\n",
    "    for p in db:\n",
    "        if db[p][\"label\"] != \"undefined\":\n",
    "            continue\n",
    "        neighbors = find_neighbors(db, p, eps)\n",
    "        if len(neighbors) < min_pts:\n",
    "            db[p][\"label\"] = \"noise\"\n",
    "            continue\n",
    "        c += 1\n",
    "        clusters.append(c)\n",
    "        db[p][\"label\"] = c\n",
    "        neighbors.remove(p)\n",
    "        seed_set = neighbors.copy()\n",
    "        while seed_set != []:\n",
    "            q = seed_set.pop(0)\n",
    "            if db[q][\"label\"] == \"noise\":\n",
    "                db[q][\"label\"] = c\n",
    "            if db[q][\"label\"] != \"undefined\":\n",
    "                continue\n",
    "            db[q][\"label\"] = c\n",
    "            neighbors_n = find_neighbors(db, q, eps)\n",
    "            if len(neighbors_n) >= min_pts:\n",
    "                seed_set = seed_set + neighbors_n\n",
    "    return db, clusters\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Lets run it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD6CAYAAACs/ECRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de7Ac1X3nPz9dSVhabIyuiEMAXeGEPJwQv7Q4cVIpHGwHUxtkJ94KzjWRHbvuIsW7SaV2N6RUlcRkVYtx1RpSsSAqwhpbd40fix05MSEY2+s/EhxECpCBxcgEYalILCQvsRbWQuK3f3QP6ju3n9Pv6e+nampmTp/uPtPTfX7n/F7H3B0hhBDDZUXbDRBCCNEuEgRCCDFwJAiEEGLgSBAIIcTAkSAQQoiBI0EghBADpxJBYGa3mNl3zOwbCdvnzexBM9tnZn9rZq+ObHsiLL/fzPZW0R4hhBD5sSriCMzsF4BjwMfd/aditr8ReMTdv2tmbwP+yN3fEG57Atjk7k/nPd/69et948aNpdsthBBD4r777nva3c8aL19ZxcHd/WtmtjFl+99Gvt4DnFvmfBs3bmTvXk0ehBCiCGZ2IK68DRvB+4A7It8d+Bszu8/MFlpojxBCDJpKZgR5MbM3EQiCn48U/7y7HzKzHwDuMrP/7e5fi9l3AVgA2LBhQyPtFUKIIdDYjMDMfhq4Gdjs7kdG5e5+KHz/DvA54KK4/d19l7tvcvdNZ521TMUlhBBiQhoRBGa2AbgduNLdvxkp/1dm9tLRZ+CtQKznkRBCiHqoRDVkZp8ELgbWm9lB4A+BVQDufhPwB8AssNPMAE64+ybgFcDnwrKVwP9w97+uok1CCCHyUZXX0Lsytr8feH9M+ePAq5fvIUT17FuEu7fDM0/CGRvgkh1w4XzbrRKifRo1FgvRFvsW4QsL8PyzwfdnDgTfQcJACKWYEIPg7u2nhMCI558NyoUYOhIEYhA882SxciGGhASBqJ19i3D9RvjgiuB932LzbTgjIfQkqVyIISFBIGplpJt/5gDgp3TzRYVBWWFyyQ5YtXZp2aq1QbkQQ0eCQNRKFbr5KoTJhfPwy7vgjDnAgvdf3iVDsRAgryFRM1Xo5tOESZGO/MJ5dfxCxKEZgaiVKnTzMvQKUS8SBKJWqtDNy9ArRL1IEIhaqUI3L0OvEPUiG4EA6k2/UFY3P9q3S+khlK5CTBOVLFXZNJs2bXKtUFYd4+kXIBhxd9Wrpu1OuG/XS4gRZnZfmPBzCVINiV6lX4hzJb393XDd+noC1eLiF/p0vYTIg1RDoldeOXGdMMBzR6pPIpeUqC7u/NDN6yVEHjQjEL3yyknrbKselSeN/G0mvn4Xr5cQeZAgEJV65dSdVyirs61yVJ50LD8pLyYxXUgQiMrSL0yaCqKI8IgTWlHWrCvW5jQSZ0pzSlchpgt5DYnSvOjFcyB++xlz8DtPJO9b1ANn3yJ87jfAX1i+bc0s/Oenc7Q1h8eRvIPEtFGr15CZ3WJm3zGz2IXnLeBPzGy/mT1oZq+LbNtiZo+Fry1VtEc0x5JZQAJp6ppJPHAunIek8ctzR3O2NceMRYnqxFCoymvoY8CfAh9P2P424ILw9QbgRuANZraOYKH7TYAD95nZHnf/bkXtEjWT5MUTJU2vn+axlDZ6P2NDvPBJO9ckyeuUqE4MgUpmBO7+NSBlLMZm4OMecA/wcjM7G/gl4C53Pxp2/ncBl1bRJtEMWcbZLCNqUse9Zl366H0SA3ef3GSFaJKmjMXnAN+OfD8YliWVi56QNgLPo0pJ6tAhXWU0idomsa3e3sppQnSB3gSUmdkCsACwYYMctrvCJTvKGVST8gjdfmV8/ejovajaJq6tLx73QPUBaUL0haYEwSHgvMj3c8OyQ8DFY+VfjTuAu+8CdkHgNVRHI0VxqkgIF9ehJ3khlQnaWtLWmGM//2wggG5/d/B9zSy87QYJBjH9NKUa2gP8Rug99DPAM+7+FHAn8FYzO9PMzgTeGpYNki4s8j4JF84H7qF/+ELwXkXHWVfq6VFbsYQKkSHGc0fgL36zP/+DEJNSyYzAzD5JMLJfb2YHCTyBVgG4+03AF4HLgP3As8B7w21HzeyPgXvDQ13j7mlG56klKa8NDHNEWnfq6SSvo3FOHi++JKYQfUMBZR3h+o0JqpCUYKy+0Xb66PG2pCWQW4IFsx0h+k5SQFlvjMXTzrS7NnZlxhMVRmvWwco1QRCarQhyCMWhZHJi2lGuoY7Qpwygk9CFHP7jkcXPHYETz8Gmq+AlL4/fZ2Z1MbtEX+08YthIEHSEJtbljeuk0jquKju1Lsx4koTR3hsDoTDOmlnYfEv+GcukSfeEaBuphjpCUeNoUX17nGrm8+8Fs8AgOiobqWugWlXOJCkhqqaI0JnENjNJCgshuoAEQYfIGyA1ib49rpN64fnl9aLqmio7taTAsyZz+Of1FILJZipdmPUIMQlSDfWQSfTtRTqjZ56svlPrQibPIkJnkpnKtNt5xPQiQdBDJumki3RGZ2xI79QmtR3UEXhWhAvnA71/FpPOVJqw8whRBxIEPWSSkWdcJ7ViVeAVE2XUcSV1ahdc1m+D6NtuWP67ZlaHAqLkTKULsx4hJkE2gh4yib49yRgdVxbtuMa39d0gWnfEstYvEH1EgqCHTNqZjXdScZ5HEEY5Pxm//u80GETVWQuxFKWYGChxKRZmVgdLQMZ5E0Ew61i5Jt7nfppSYdRNl1JtiGFR65rFIh9dijqNU/GcPJ4sBOBUfRlEJ2eSoLMu3TdiOpEgaIgmo07zdByTqnKeOzosg2jV0dhFXX//aluwRkJfjfOiH0g11BBNZReNU/nErRiW1J4shqQCyqs+G11fyL72H1zBkjUPXiQmw+m+xXCltpj6Q/ofRHVINdQyTRlZk0acn9uydBQZ5x46szpwKU1iaCqgvOqz0Yg+z2i/iOvv3duJFxr0yzgvuo8EQUM0FXWa1EH4yaUqhTif9823wNv/+6myNbPV+NdH6ZO+u45o7CJBZ1UFCAqRhdxHG6KpXDtp+XTG/f2T3ChHZSPvlucqWjOuK2sS5KVIbqJRx5yVWK+I62/a+Y8fC4SpvI5EFWhG0BBNRZ3GjTij5B3l1mHc7sKaBEXIqz7LisaeVNgn/ZcrVoYuvDIei4qoas3iS4EbgBngZne/dmz7R4A3hV/XAj/g7i8Pt50E9oXbnnT3y6toUxdpIpBpdPzPbYlfcSuvSqGOCOK+BaNVFY09HsSXNCuK2/eXdy0tO35seRxHnyK7RTcp7TVkZjPAN4G3AAcJFqJ/l7s/nFD/3wOvdfffDL8fc/fTi5yzj15DVZInICmv91ASRbxb8jKEdZmzSLoGa2aD1dKy/q86/hcxHOr0GroI2O/uj7v7ceA2YHNK/XcBn6zgvJ2nDsNoXpVNWVVUHcZtZedMnv08dySf2kyprkUdVCEIzgG+Hfl+MCxbhpnNAecDX44Uv8TM9prZPWb29qSTmNlCWG/v4cOHK2h2vdQVQFZEz14m7XMdnXbT2Tm76KFUtMMeFxwSpqIOmvYaugL4rPsS7fWcux8ys1cCXzazfe7+rfEd3X0XsAsC1VAzzS1GVGVjK5br6KvQ5TalZ68rS2dTCd+66qGU5D2WmMNpTHDUnT1VDJMqBMEh4LzI93PDsjiuAH4rWuDuh8L3x83sq8BrgWWCoOuMdzxxhloo32E3ufZvn7N0djVddpoBOq97cZ//F9FNqhAE9wIXmNn5BALgCuDXxyuZ2Y8DZwJ/Fyk7E3jW3b9vZuuBnwOuq6BNjRPX8cRRtsPuwtq/faDLHkppHblG+qINSgsCdz9hZh8A7iRwH73F3R8ys2uAve6+J6x6BXCbL3VT+gngz8zsBQJ7xbVJ3kZdJ08HU0WHLdVAPpqcOcWRN9V0FSmpldZalEVJ5yoiyS3QZsBfSHfzrOshHnIHUdZ9tolzV9HGNn+n6B9KOlczSd4c77g12Wsny7OojNdLk2mvu0ib6wfn9eyqItI6zzG66D0luoVyDVXEJCqbrIe4jNdLV42lTdKWUTWvfaIKO0bWMbrqPSW6hQRBhRTteNIe4rIdeZeNpdNOXvtEFXaMrGNoQCDyINVQS+xbDGIN4jhjQ/mOXBGo7ZE36KuK4LCsY2hAIPIgQVABRXWwo+l6XKzB6CEu25ErArU98tonqrBjZB1DAwKRB3kNlWQSr400D6N33BrsV5VHyVC9hkSAvIpElCSvIdkISlJUB7tvMXmxEX9h6aIxo+NP2pErAnX6yRL2ijsReZAgKEkRHexodJZEXF4ZPbAiibweQbqPRBayEZSk6GLkSWkopL8XRclyP1b8gMiLBEFJqlqMXDpbEUdaZ542Gx16QKEohgRBSYp4fiTOHuYkBF5kcRE2boQVK4L3xeH2XFmdedpstG/rQ4t2kSCogLwLwMilM4PFRVhYgAMHwD14X1gYrDDI6sxjF7c3uOAyxQ+IYkgQNEib+W96wfbt8OxYz/fss0H5AMnqzC+ch1dvASyy0eGBW2HNuvh9i8QPyMbQMC3OhuU11DDy4EjhyYSeL6l8ysmTguKxL7JsMfvnnw1WPFu1dvJ1K5SjqGFGs+HRQGg0GwaYr/+Ca0ZQExpN5WB8BLQuYRi7YZhhsHlUiUmzhueOlpt9ysbQMBmz4W3btrFy5UrMjJUrV7Jt27ZKTy9BUAPy2MhBnD3ge9+DVauW1lu7FnbsWL7vAAzKeVSJaQbjvLarOGRjaJiU2fC2bdu48cYbOXkyyElz8uRJbrzxxkqFgVJMlCQusvPu7QlT+rnggRQEHfiBmIs0Owunnx48GBs2BEIgOjUen0JDICx27WpkCt016kohkZQGRfdwTSQ9D3NzrDx48EUhEGVmZoYTJ04UOk2tC9OY2aVm9qiZ7Tezq2O2v8fMDpvZ/eHr/ZFtW8zssfC1pYr2NEXSyD8phYRGUxGSRkBHj8ITT8ALLwTv4527DMpLqMsBQR5uDbNjRzCgiRLOhuOEAJBYPgmljcVmNgN8FHgLcBC418z2xKw9/Cl3/8DYvuuAPwQ2EZi87gv3/W7ZdjVBkh7VZuIziyrjY4QNG+JHQFn2ABmUl1HWASEtX5FyFDXEaMCzffuy2fDMli2JM4KqqGJGcBGw390fd/fjwG3A5pz7/hJwl7sfDTv/u4BLK2hTIySN8P2kRlOZpIyAUkkSFAM1KJclzZ5VxMYg54gKmJ+PnQ0vLMQnKEsqn4QqBME5wLcj3w+GZeP8qpk9aGafNbPzCu7bSdIihRUvkMH8fKDXn5sDs+A9j55/UgEiYqnCO0jOEfWyc+dOtm7d+uIMYGZmhq1bt7Jz587KztGU19AXgI3u/tMEo/5bix7AzBbMbK+Z7T18+HDlDRxRZGSTpkcdjaZ+5RNB+e1XaqS0jIQRUOY+kwgQEUsV3kFyNa2fnTt3cuLECdydEydOVCoEoBpBcAg4L/L93LDsRdz9iLt/P/x6M/D6vPtGjrHL3Te5+6azzjqrgmYvp+jIJstQp5FSTUwiQEQsVaxgJlfT/lOFILgXuMDMzjez1cAVwJ5oBTM7O/L1cuCR8POdwFvN7EwzOxN4a1jWClWPbIoeb7B61oHEBXSRKryDtBxmTjp8n5f2GnL3E2b2AYIOfAa4xd0fMrNrgL3uvgf4D2Z2OXACOAq8J9z3qJn9MYEwAbjG3Y+WbdOkFB3ZZIXhT7JozeBC+lsOre87ZZcjrcI76JId8bEMco6I0PH7XAFlEYoG0WTVL3K8wQbwpATS8MQTTbemV3RpPWKtj51BR+7zWgPKpoWi0+SsEX8Vi9ZMvZ5VcQET0yUjbZl0FoOg4/e5BEGEolGaWal+K1m0Ztr1rIoLmJjBDh76SMfvc6WhHiNvlOa+RTj+veXlK1YtHfHnPd5g9aw7dsTnDlJcQCZ50lSLjtDx+1wzggySPHnu3g4njy+vf9rLJpsWD3bRGsUFTIzyAfWIjt/nMhankGaMu/1Kli0IAoAFelIhmkBGWlEEGYsnIM0YN1idvugUZY20k8SuKN6le3EAZZEgSCHNGKdpueg7k0S+DzZaPm4hpYWFqREGEgQpZK3+NEidfleZ4tFaXUziftoll9VGmfJ1MCQIUsga9ct3ugYm6dCnfLRWBXHqnEncTwfrslo2DqDjAxUJghQ06m+YSTv0KR+tleWvtgXODVF1zu1XLh/kjEizcw3WNjZpHMDiIqxfD+9+d6cHKhIEGWjU3yCTdugdj9psk32LsPcmlnu4OTz/f4O4lyhZdq64WTLA8WNTbifIsw7G+Kh/27agwz9yZPnxOjZQkSAQ3SFvhz7+wK1LCPHuSNRmm9y9nXg355DTXlZsxjuaJa+ZXVr+3JEpNxpnxQHEzWZvumn5wCZKhwYqiiMQzbG4GLsm64skJeY6/XSYnQ32W7cO/uVf4PnnT21ftSp4OI9HIvzWru1UwE5bfHAFqYJg0riXwSZJTCLp3k2jhcSKiiOYkMH6TFdNHv3/jh2wevXyfY8dO7XfkSNLhQAE31/60s5GbbZJlu5+Ut3+YI3GSRQd3XcovQRIEKQyWJ/pOsij/5+fDzr0STh6VKuWxZCk04dycS+DNRonkaSGNFteNjvbuYGKBEEKg/WZroO8+v+jE65LJHtALEs83wAL1j9/0R4Ak814FVA5RpIx+aqrls5Ud++Gp5/ulBAAZR9NRdPfCtmwIV6HOt6BJ9VLo2PT7K6RlAG3zKp4VaxsNlWMOvY0G1iHkbE4BRnEKmR8qT6IN+jG1Rtn9epAhXT0aO8euC6h+3t41GosNrNLzexRM9tvZlfHbP9dM3vYzB40s7vNbC6y7aSZ3R++9ozv2yaa/lZI3jS8cfW2bl36/ZZbgum17AGl0Ix3QjoeJTwJpWcEZjYDfBN4C3CQYCH6d7n7w5E6bwK+7u7PmtlW4GJ3/7Vw2zF3P73IOZt0H1WaXzGtaEYwAXlnth2lzhnBRcB+d3/c3Y8DtwGboxXc/SvuPrpy9wDnVnDeRlBksZhWNOOdgKLR7z2ZPVQhCM4Bvh35fjAsS+J9wB2R7y8xs71mdo+Zvb2C9nQSxSOIrqFcWhNQJJ1Jj5IhNuo+ambvBjYBH44Uz4VTlV8HrjezH07YdyEUGHsPHz5cWxvr6LAVj1AxPRll9QHNeAuwuBjcc3HEuS/3KBliFYLgEHBe5Pu5YdkSzOzNwHbgcnf//qjc3Q+F748DXwVeG3cSd9/l7pvcfdNZZ51VQbOXE9dhf/69cN36coJB8QgVkmeUJUEhqmZ03508uXzbyH15/L5LcoPuUI6hEVUIgnuBC8zsfDNbDVwBLPH+MbPXAn9GIAS+Eyk/08xOCz+vB34OeJiWiOuwX3g+SKhVZiQv74wKyRpl9Wg63hZSU05A3H0HMDMTGIph+X0XF1UMnQx+LC0I3P0E8AHgTuAR4NPu/pCZXWNml4fVPgycDnxmzE30J4C9ZvYA8BXg2qi3UdPk6ZjjRvJZD5bC8SskS0fbo+l4G0hNOSFJ990LLwTeQnH3XZxH5urVnQx+rMRG4O5fdPcfdfcfdvcdYdkfuPue8POb3f0V7v6a8HV5WP637n6hu786fP/zKtozKXk75qjAyPNgyTujQrIWCEl6YA8c0KwAqSknZtL7bpyOBvAq11CEtARdUaICI8+DJe+MCslaICRt2i0VkdSUk7C4GGTAHSfvfRfl+ec7OTuVIIgw3mGvmYWZmKzI0dWY8j5Y8s6oiKwI5ThBMUIqIqkpizKyOY2vMjaeQTTtvhung8Zi5RpKYd8i3PHbobF4jFVrA6Fx93ZFZ3aOxcVgjdg4zAK97gCIi4qHpYnm4NS9rMFJDEneP3GLyowvvHTsWPwylS0sSDNCC9MUZKT7jxMCcEr9I/1/B5mfDx62ODrosVEHSbYrkJqyEEUCyObnl66JccMN2escdwQJggTidP/jjGYCerA6SJ7FxqeYJNvV57bA7VcG33/lE1JTZpJlJE4jb6LFDqD1CBLIazz7wkLQ8UsN1DF6nh++LEn3r4fxUEXWHhg0O3bEJ5nLO6CYn+/FPacZQQJ5jWdyvesw41P1HjyQVZHn/tW9m4MejerLIEGQQF5XUpDrnegeee9f3bs5GMCAQoIggTjf/zWz8XXXrGu0aUJkMrp/R2sUJyG3UQESBKmM+/6/7QZYsWp5vePfU4i+6B4XzoOneMrKu02MkCAowIXzcNrLlpefPC5dq+gmSSN+m5F3mziFBEFBnjsaXy5dq+giSXEu77hVQkCcQoKgIArR7yhagyAW5blqmW3bYOXKwONo5crgewdRiomCjCI2FaLfIeIWFIcgH8wNN0yll4foAdu2wY03Li/fuhV27my+PSSnmJAgmIC4HC4SAi2SthrU2rVT6fddB7qvK2blyvgVzWZm4MSJ5tuDBIFu8mlmxYr0PO8tJvnqC5rp1kDSCmXQ2roEg046p1WZppysvC8dTPvbNbRgTQ3MJARxJJW3yCAEgW7yKSDNGJyVC34gGUfLoAVramBhoVh5i1QiCMzsUjN71Mz2m9nVMdtPM7NPhdu/bmYbI9t+Pyx/1Mx+qYr2jKObvOdkLUg/ygczGxP6PaCMo2WQN1wN7NwZGIZHM4CZmVYNxWmUFgRmNgN8FHgb8CrgXWb2qrFq7wO+6+4/AnwE+FC476uAK4CfBC4FdobHqxTd5D0nz4L08/Pw9NOwe/fUJwirA62rURM7dwaGYffgvYNCAKqZEVwE7Hf3x939OHAbsHmszmbg1vDzZ4FLzMzC8tvc/fvu/o/A/vB4laKbvOeUWRxEQiAXReIN9i3C9RvhgyuCd9naIvQ0nqWK9QjOAb4d+X4QeENSHXc/YWbPALNh+T1j+54TdxIzWwAWADYU1PmObmZ5DfWUDRvi3UOl+6+UC+ezn4lx7yKtaxBhPJ5lpMKEzg9IemMsdvdd7r7J3TedddZZhffX4vE9ZtLVxno6OquSqkfvcrwg+b7Ko8LsKFXMCA4B50W+nxuWxdU5aGYrgTOAIzn3bQ3FHnSESVYb6/HorCrqGL0P3vEi7b4qosLsGFXMCO4FLjCz881sNYHxd89YnT3AlvDzO4EvexDJtge4IvQqOh+4APj7CtpUGsUedIyo7n/HjkAopI30ezw6q4o6Ru+DcbyYZNRfZn3jliktCNz9BPAB4E7gEeDT7v6QmV1jZpeH1f4cmDWz/cDvAleH+z4EfBp4GPhr4LfcPSYmu3k0Be4oWa6kI3o8OquKOkbvg3C8SLvH0u6rSVWYHWAwKSaK8sEVQNylscDOIFoiKa/QeBqJvPWmmOs3hjPaMc6YC+xkkzLVKtPFRdiyJT5H0Nxc8J52Xy0uFlNhNsygU0xMwmCmwH0j70i/x6Ozqqhr9D61jhejmUCcEIB8o/6q3JcbdnSQIEhgEFPgPpJXDzuKNh5wcJnWIihInP4/yoYN2fdVFR14XvVnlbh7716vf/3rvQke3O3+kTn3P7Lg/cHdjZxWpLF7t/vate7BIxK81q4NytP2mZtzNwve0+qK4WK29L6Kvkbb0u6fSe7NOObm4tswN1fyB7oDez2mT229U5/k1ZQgEB1l1LGD+8xM+gNa1cMppp+kDnj8lXT/VNWBJwkks9I/MUkQSDUk+sf8/Cld7UifmzR9LuJGqgC0YTL63w8cWL6GQNyaAkn3T1Weai24oUoQiH6S1sFHO/SklcvGH8429LKifaL/OwT//ajzn5tLXkAmrnMv2oEnDTzacHSImyZ0/SXV0MCI0/Gn6XPHVUF5pus16mVFh8n634vcF0XUkFl1a7JrIRuB6CVJD8zsbPwDOrIZFNXx1qiXFR0m638vamPK24G3NPBIEgRSDYluk6QCgvjpc5IPOKS7kfY4PYAoQdb/XtQNOW8cQcci3yUIRLdJejCOHo1/QEfRn+PMzaU/nApAGyZ5/vc61rjo2MBDgkB0m7QHJu4BnbRDn58PUgtElxXcsmVQAWiDJM+Ivw5vsq4NPOL0RV1/yUYwIJoKIFO8gYijzvuihUBHZCwWvaWJB0ZeQ92iK9HgU3ZfJAkCqYZE92liHeI0450CzZqlSzEdHTPq1oUEgRCQbItYt647ndJQaGNRoSRh3zGjbl1IEAgBycY7GPxKZ43T9Cg8bQbSNaNuTUgQCAHJ3iNHj8bX76tqoG41VxXHb3oUnjYDGUo68zjDQd4XsA64C3gsfD8zps5rgL8DHgIeBH4tsu1jwD8C94ev1+Q5r4zFIpOqjI3TZCys2zOqquM37cE1oKhy6vAaAq4Drg4/Xw18KKbOjwIXhJ9/CHgKeLmfEgTvLHpeCQKRSpUdyTS5ldYt1Ko8fpNeQ9Mk7DOoSxA8Cpwdfj4beDTHPg9EBIMEgaieqh/srrgylqXukW9fR9Z15RPqIEmCoKyN4BXu/lT4+Z+AV6RVNrOLgNXAtyLFO8zsQTP7iJmdVrI9QlRvbGzCfbUJ6ta999XDpogdoEuurRWSKQjM7Etm9o2Y1+ZovVDaeMpxzgY+AbzX3V8Ii38f+HHgXxPYG34vZf8FM9trZnsPHz6c/cvEcGmyQ+pTjEHdHjB99rDJK+zbcG1tgrhpQt4XOVVDwMuAfyBFDQRcDPxlnvNKNSRSaUqv30f7Qd1qjR6rTXLRV/VXCDXZCD7MUmPxdTF1VgN3A78Ts20kRAy4Hrg2z3klCEQmbaalGNkjpq0TbJKuCpSeG5brEgSzYSf/GPAlYF1Yvgm4Ofz8buB5TrmIvugmCnwZ2Ad8A9gNnJ7nvBIEohOkrZLWh9lBV+nyTKvLbctBLYKgrZcEgchNnSPLtBlBnSPFro6Wq6Lro+4eX38JAjE82gigqlt33PMRaS6a0sP3uEOflCRBYMG2frFp0ybfu3dv280QXWfjxsC9b5y5ucAzpAoWF4MFbJKWyKzyXNDMb2qbpv63hYWlHkBr105n+ogIZnafu28aL1euITG9NJG8bH4+cDlMomrXySGkRa7CDTXLrXda3UAnRIJATC9NxRMkHW92drLRZVon1tegrSKUTfSWJ+hrCAK1CHH6oq6/ZCMQuehaPEEenXTWsabFRtCGET9qbO66QbomkLFYDJKmDIJZ52kH/WcAAArwSURBVMnbgefpoNo2cpY9fx3CLNqmPIb7aRGoBZEgEKJN8o5A0zqyLni4VNGB1pEUMMt7K+744wJt69ZuXOMaSRIE8hoSoglWrAi6o3HMlhqbkzxmzJbu35aHSxUePXmvRdk2Rcm6XgPxIpLXkBDjNJkwLsmYu2LF0vPGecyMCwFoz8MlyZia1RFHqdrgnWbgzWtsHrgXkQSBGCZ5PEuqFBRxHTwE8QfR88Z5zCTN2tvwcEnqrM3Sr0/0Wh47BqtWLd1eJktpUpvm5pZmE037P4fuRRSnL+r6SzYCUZosPXUZXXiSMXX3bveZmeL68S55uOzenWzHSGpP3LVcvdp9drYafXye/yqrTpeucY0gY7EQEbLSGEzaMWR1OJOkT2jbw2VcsKV55cQJwSY62TRPpjwCuO1r3BASBEJEyeqcJs13k3XcMgKmiEdLVS6mcR1k0rWZnY3vTNMER91keRSNu5QO1Guo9U59kpcEgShNXaqCLAHSxMizynMkXYfx37l2bSAI8tStU+0y3pkntanONnQYCQIhxslSJ0zSmXYhIKwqVczu3dmdaPQ3ZK3PEH2tWtVMhHfaawpVP1lIEAhRlEk67C7omqtQxWR1qnFCJc/6DFE1UtUUOf/MzOCEgHuyIJD7qBBJ5F3QfHyfMgnTyrK4GJw3jiJ++nF+9SOSXD2TXGTjOHo0f1vyktfVc+1auPXWqQoUK4sEgRBVM4kASaNIPMP27cGYdxyzYn76aZ3qmjVw5ZXL2xInBGdn449RR7bUtCywbQnmvhA3Tcj7AtYBdxGsWXwXcGZCvZOcWq94T6T8fODrwH7gU8DqPOeVakgMhqKqpjQ9/eh4edRdRYzEaSqWumMIss41QDtAGtS0eP11wNXh56uBDyXUO5ZQ/mngivDzTcDWPOeVIBC9ooxxuKjhN61+kY6yqNto3t8/OxsYiuvqrAfgAlqGugTBo8DZ4eezgUcT6i0TBIABTwMrw+8/C9yZ57wSBKI3lB2lFo1nSDtfUaGSN5AM8v+egUTwdpUkQVAq+6iZ/R93f3n42YDvjr6P1TsRqoVOANe6++fNbD1wj7v/SFjnPOAOd/+prPMq+6joDWWzdU6y/+JiYCt48slAb75jR6ATL5v1My3LZ97fU3XmUVGIibOPmtmXzOwbMa/N0XqhtEmSKnPhyX8duN7MfniCH7BgZnvNbO/hw4eL7i5EO5RNZlZ0/d4kIQDls36mGZvz/p4hLLXZR+KmCXlf5FQNje3zMeCdSDUkhkAVqpBxHXuSobWJZS6TInXz/p6mIqtlJ4iFmmwEH2apsfi6mDpnAqeFn9cTeBi9Kvz+GZYai7flOa8EgegNVXZ8VaTF6MIyk1F7xSgZXFUdtjyHUqlLEMwCd4ed+5eAdWH5JuDm8PMbgX3AA+H7+yL7vxL4ewL30c+MBEbWS4JA9IoinW9a3boS5dX5e9KOUUeHLWN0KkmCQEtVCtEVtm2Dm25aakyNLpeYZWitYhnJpqirrTJGp6KlKoXoMouLy4UALF0uMcvQWtSw3CZ1rQgmY/RESBAI0QWSUkPAqc4xq6NvO89REerqsPskDDuEBIEQXSBtJDzqHPN09FXnOaqLujrsPgnDDiFBIEQXSFsUPto59qWjjxKXNK/ODruP16hlVrbdACEEQWe/sLA09bMZXHVVvzuyxcWlv+vAgeA7BL+rz79titCMQIguEDdC/sQnYOfOtltWjrh1DaIGcNEJ5D4qhKgPuXN2CrmPCiGaR+6cvUCCQAhRH3Ln7AUSBEKI+pA7Zy+QIBCiCoqsKzw05M7ZeeQ+KkRZslwkheg4mhEIURa5SIqeI0EgRFnqSqAmRENIEAhRFrlIip4jQSBEWeQiKXqOBIEQZZGLpOg58hoSogqUQE30mFIzAjNbZ2Z3mdlj4fuZMXXeZGb3R17/z8zeHm77mJn9Y2Tba8q0RwghRHHKqoauBu529wsIFrG/eryCu3/F3V/j7q8BfhF4FvibSJX/NNru7veXbI8QQoiClBUEm4Fbw8+3Am/PqP9O4A53fzajnhBCiIYoKwhe4e5PhZ//CXhFRv0rgE+Ole0wswfN7CNmdlrJ9gghhChIprHYzL4E/GDMpiVhk+7uZpa4uIGZnQ1cCNwZKf59AgGyGtgF/B5wTcL+C8ACwAb5ZwshRGWUWpjGzB4FLnb3p8KO/qvu/mMJdX8b+El3X0jYfjHwH9393+Q472HgwMQNL8d64OmWzl2GvrYb+tt2tbt5+tr2pto95+5njReWdR/dA2wBrg3f/yKl7rsIZgAvYmZnh0LECOwL38hz0rgf0hRmtjduhZ+u09d2Q3/brnY3T1/b3na7y9oIrgXeYmaPAW8Ov2Nmm8zs5lElM9sInAf8r7H9F81sH7CPQCL+l5LtEUIIUZBSMwJ3PwJcElO+F3h/5PsTwDkx9X6xzPmFEEKURykmirOr7QZMSF/bDf1tu9rdPH1te6vtLmUsFkII0X80IxBCiIEjQZCBmf1bM3vIzF4ws0SrvpldamaPmtl+M1uWaqNp8uSBCuudjOR62tN0O8faknoNzew0M/tUuP3roRNC6+Ro93vM7HDkOr8/7jhNY2a3mNl3zCzWW88C/iT8XQ+a2euabmMcOdp9sZk9E7nef9B0G+Mws/PM7Ctm9nDYp/x2TJ12rrm765XyAn4C+DHgq8CmhDozwLeAVxIExz0AvKrldl8HXB1+vhr4UEK9Y21f47zXENgG3BR+vgL4VE/a/R7gT9tua0zbfwF4HfCNhO2XAXcABvwM8PW225yz3RcDf9l2O2PadTbwuvDzS4FvxtwrrVxzzQgycPdH3P3RjGoXAfvd/XF3Pw7cRpCHqU2K5oFqmzzXMPqbPgtcEsagtEkX//tcuPvXgKMpVTYDH/eAe4CXh4GjrZKj3Z3E3Z9y938IP38PeITl3pStXHMJgmo4B/h25PtBYtxlGyZvHqiXmNleM7tnlB68JfJcwxfruPsJ4BlgtpHWJZP3v//VcKr/WTM7r5mmlaaL93VeftbMHjCzO8zsJ9tuzDihWvO1wNfHNrVyzbUwDen5lNw9LVq6VSrKAzXn7ofM7JXAl81sn7t/q+q2DpwvAJ909++b2b8jmNUohqY+/oHgvj5mZpcBnwcuaLlNL2JmpwP/E/gdd/+XttsDEgQAuPubSx7iEEHk9Ihzw7JaSWu3mf1zJIXH2cB3Eo5xKHx/3My+SjBKaUMQ5LmGozoHzWwlcAZwpJnmJZLZbg8CL0fcTGC/6QOt3NdliXau7v5FM9tpZuvdvfUcRGa2ikAILLr77TFVWrnmUg1Vw73ABWZ2vpmtJjBktuqBw6k8UJCQB8rMzhyl/jaz9cDPAQ831sKl5LmG0d/0TuDLHlrYWiSz3WM63ssJdMN9YA/wG6Eny88Az0TUjZ3FzH5wZDsys4sI+rm2BwyEbfpz4BF3/28J1dq55m1b0rv+At5BoKf7PvDPwJ1h+Q8BX4zUu4zAC+BbBCqltts9S7Bq3GPAl4B1Yfkm4Obw8xsJ8jw9EL6/r+U2L7uGBGnJLw8/vwT4DLAf+HvglW1f55zt/q/AQ+F1/grw4223OWzXJ4GngOfDe/x9wFXAVeF2Az4a/q59JHjNdbDdH4hc73uAN7bd5rBdPw848CBwf/i6rAvXXJHFQggxcKQaEkKIgSNBIIQQA0eCQAghBo4EgRBCDBwJAiGEGDgSBEIIMXAkCIQQYuBIEAghxMD5/1SENh4utwCVAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "eps = 0.25\n",
    "min_pts = 12\n",
    "\n",
    "db,clusters = dbscan(points,eps,min_pts)\n",
    "\n",
    "plot_cluster(db,clusters)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I encourage you to try with different datasets and playing with the values of eps and min_pts.\n",
    "\n",
    "Also, try kmeans on this dataset and see how it compares to dbscan. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I hope by now you are convinced about about how cool dbscan is. But it has its pitfalls.\n",
    "### When NOT to use ?\n",
    "\n",
    "1. You have a high dimentional dataset. Euclidean distance will fail thanks to '[curse of dimentionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_functions)'.\n",
    "2. We have used a dict to store the points. So we can't do anything about the order in which the points will be processed. So it's not entirely deterministic.\n",
    "3. Won't work well if there are large differences in density. Finding the min_pts and $ε$ combination will be difficult.\n",
    "4. Choosing the $ε$ without understanding the data and its scale, might result is poor clustering performance."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}
关于此算法

DBSCAN

此实现和笔记本受原始 DBSCAN 算法和文章的启发,如 DBSCAN 维基百科 中所述。

代表 **基于密度的应用空间聚类噪声** 。

DBSCAN 是一种聚类算法,它试图捕捉这样的直觉:如果两个点属于同一个聚类,它们应该彼此靠近。它通过找到密集打包在一起的区域来做到这一点,即具有许多紧密邻居的点。

何时使用?

  1. 您需要一个强大的聚类算法。
  2. 您不知道数据集中有多少个聚类。
  3. 您发现很难通过观察数据集来猜测有多少个聚类。
  4. 这些聚类具有任意形状。
  5. 您希望检测异常值/噪声。

为什么选择 DBSCAN?

该算法比其他聚类算法(如 k 均值)好得多,后者只负责查找圆形斑点。它足够聪明,可以自己找出数据集中聚类的数量,不像 k 均值,您需要指定“k”。它还可以找到任意形状的聚类,而不仅仅是圆形斑点。它对异常值(噪声点)的影响太大而不会受到影响,不像 k 均值,由于讨厌的异常值,整个质心会被拉动。此外,您可以根据要聚类的内容微调其参数。

看一下这些 简洁的 DBSCAN 动画 来亲眼看看。

import matplotlib.pyplot as plt
import numpy as np

%matplotlib inline

首先,让我们获取一个数据集

我们将使用月球数据集,该数据集非常适合展示 DBSCAN 的强大功能。

让我们生成 200 个随机点,形状为两个月球。

from sklearn.datasets import make_moons

x, label = make_moons(n_samples=200, noise=0.1, random_state=19)

使用 matplotlib 可视化数据集

您将观察到这些点呈两个新月形。

这里的挑战是将这两个月球聚类。

plt.plot(x[:,0], x[:,1],'ro')
[&lt;matplotlib.lines.Line2D at 0x11a00e588&gt;]

算法摘要

DBSCAN 算法可以抽象为以下步骤

  • 找到每个点 $ε$ (eps) 邻域中的点,并确定具有超过 min_pts 个邻居的核心点。
  • 找到邻居图上核心点的连通分量,忽略所有非核心点。
  • 如果聚类是 $ε$ (eps) 邻居,则将每个非核心点分配给附近的聚类,否则将其分配给噪声。

准备点

最初,我们将数据集中所有点标记为 **未定义** 。

**points** 是我们数据集中所有点的数据库。

points = { (point[0],point[1]):{'label':'undefined'} for point in x }

辅助函数

def euclidean_distance(q, p):
    """
        Calculates the Euclidean distance
        between points P and Q
    """
    a = pow((q[0] - p[0]), 2)
    b = pow((q[1] - p[1]), 2)
    return pow((a + b), 0.5)
def find_neighbors(db, q, eps):
    """
        Finds all points in the DB that
        are within a distance of eps from Q
    """
    return [p for p in db if euclidean_distance(q, p) &lt;= eps]
def plot_cluster(db, clusters):
    """
        Extracts all the points in the DB and puts them together
        as seperate clusters and finally plots them
    """
    temp = []
    noise = []
    for i in clusters:
        stack = []
        for k, v in db.items():
            if v["label"] == i:
                stack.append(k)
            elif v["label"] == "noise":
                noise.append(k)
        temp.append(stack)

    color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters))))
    for i in range(0, len(temp)):
        c = next(color)
        x = [l[0] for l in temp[i]]
        y = [l[1] for l in temp[i]]
        plt.plot(x, y, "ro", c=c)

    x = [l[0] for l in noise]
    y = [l[1] for l in noise]
    plt.plot(x, y, "ro", c="0")

DBSCAN 实现

初始化一个空列表,clusters = $[ ]$ 和聚类标识符,c = 0

  1. 对于我们的数据库/字典 db 中的每个点 p

    1.1 检查 p 是否已标记。如果它已标记(意味着它已与聚类相关联),则继续到下一个点,即转到步骤 1

    1.2。找到 p 的邻居列表,即距离 p 不超过 eps 的点。

    1.3。如果 p 至少没有 min_pts 个邻居,我们将其标记为噪声,然后返回步骤 1

    1.4。初始化聚类,将 c 增加 1

    1.5。将聚类标识符 c 附加到 clusters

    1.6。使用聚类标识符 c 标记 p

    1.7。从邻居列表中删除 p(p 将被检测为它自己的邻居,因为它在自身 eps 之内)

    1.8。初始化 seed_set 作为 neighbors 的副本

    1.9。当 seed_set 不为空时:1.9.1。从 seed_set 中删除第一个点并将其初始化为 q 1.9.2。如果它的标签是噪声,则用 c 标记它 1.9.3。如果它不是未标记的,则返回步骤 1.9 1.9.4。用 c 标记 q 1.9.5。找到 q 的邻居 1.9.6。如果至少有 min_pts 个邻居,则将它们附加到 seed_set

def dbscan(db,eps,min_pts):
    '''
        Implementation of the DBSCAN algorithm
    '''
    clusters = []
    c = 0
    for p in db:
        if db[p]["label"] != "undefined":
            continue
        neighbors = find_neighbors(db, p, eps)
        if len(neighbors) &lt; min_pts:
            db[p]["label"] = "noise"
            continue
        c += 1
        clusters.append(c)
        db[p]["label"] = c
        neighbors.remove(p)
        seed_set = neighbors.copy()
        while seed_set != []:
            q = seed_set.pop(0)
            if db[q]["label"] == "noise":
                db[q]["label"] = c
            if db[q]["label"] != "undefined":
                continue
            db[q]["label"] = c
            neighbors_n = find_neighbors(db, q, eps)
            if len(neighbors_n) &gt;= min_pts:
                seed_set = seed_set + neighbors_n
    return db, clusters

让我们运行它!

eps = 0.25
min_pts = 12

db,clusters = dbscan(points,eps,min_pts)

plot_cluster(db,clusters)

我鼓励您尝试使用不同的数据集并使用 eps 和 min_pts 的值进行操作。

此外,尝试对该数据集使用 k 均值,并查看它与 dbscan 的比较结果。

我希望到目前为止,您已经相信 dbscan 很酷。但它也有缺点。

何时不使用?

  1. 您有一个高维数据集。由于“维数灾难”,欧几里得距离将失败。
  2. 我们使用了一个字典来存储点。因此,我们无法对处理点的顺序做任何事情。所以它并不完全是确定性的。
  3. 如果密度差异很大,则效果不佳。查找 min_pts 和 $ε$ 组合将很困难。
  4. 选择 $ε$ 而不了解数据及其规模,可能会导致聚类性能不佳。