The Algorithms logo
算法
关于我们捐赠

NumPy 基础

H
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fundametal of Numpy"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Numpy is linear algebra library for python .\n",
    "this is importent library because all pydata ecosystem rely on numpy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[1, 2, 3]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "arr = [1,2,3]\n",
    "arr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1, 2, 3])"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.array(arr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[[1, 2, 3], [4, 5, 6], [7, 8, 9]]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "my_mat = [[1,2,3],[4,5,6],[7,8,9]]\n",
    "\n",
    "my_mat\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1, 2, 3],\n",
       "       [4, 5, 6],\n",
       "       [7, 8, 9]])"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.array(my_mat)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "my_mat[0][1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Arange"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# np.arange(start , last , offset)\n",
    "\n",
    "np.arange(0,10)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 1, 2, 3, 4])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.arange(0,5,1)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 2,  4,  6,  8, 10])"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.arange(2,12,2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Zeros "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0., 0., 0.])"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Zeros \n",
    "\n",
    "np.zeros(3)  # one dimensional"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[0., 0., 0.],\n",
       "       [0., 0., 0.],\n",
       "       [0., 0., 0.]])"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.zeros((3,3))  # two dimensional"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## One's"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1., 1., 1., 1., 1.])"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# one's\n",
    "\n",
    "np.ones(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1., 1.],\n",
       "       [1., 1.]])"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.ones((2,2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## linespace"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0.        , 0.55555556, 1.11111111, 1.66666667, 2.22222222,\n",
       "       2.77777778, 3.33333333, 3.88888889, 4.44444444, 5.        ])"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# linspace -> (start , end , how many point u want in between start to end)\n",
    "\n",
    "np.linspace(0,5,10)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## eye"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1., 0., 0.],\n",
       "       [0., 1., 0.],\n",
       "       [0., 0., 1.]])"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Diagonal element \n",
    "\n",
    "np.eye(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Random Function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[0.93087129, 0.30534035, 0.2508104 ],\n",
       "       [0.05900399, 0.39901502, 0.00206355],\n",
       "       [0.10066378, 0.67083509, 0.95297132]])"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# random -> (number of points in between )\n",
    "\n",
    "np.random.rand(5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[0.29917792, 0.88770559, 0.0923786 ],\n",
       "       [0.33748283, 0.56245829, 0.88557374],\n",
       "       [0.88111555, 0.40227034, 0.28943298]])"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.random.rand(3,3)    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 0.65926802, -0.18545583, -0.5672595 ])"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# random based on standard normal distrubution\n",
    "\n",
    "np.random.randn(3)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "8"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# random number between start to end anything in interger format\n",
    "\n",
    "np.random.randint(1,20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([18, 12, 16,  3,  4])"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#  start , end , numbers of points in between \n",
    "np.random.randint(1,20,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Reshape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "# reshape\n",
    "\n",
    "# we can reshape the arr into 2 dimesional\n",
    "# we can't resize 10 into 2 row and 3 column or anything we have to reshape into row 2 and column 5\n",
    "                \n",
    "array = np.arange(10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[0, 1, 2, 3, 4],\n",
       "       [5, 6, 7, 8, 9]])"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "array.reshape(2,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Random "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "17\n",
      "2\n",
      "0\n",
      "2\n"
     ]
    }
   ],
   "source": [
    "number = np.random.randint(1,20,5);\n",
    "print(number.max())\n",
    "print(number.min())\n",
    "print(number.argmax())  # return location where max is stored\n",
    "print(number.argmin())  # return location where min is stored\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(10,)"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    " array.shape  #because its one dimesional "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## dtype"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dtype('int32')"
      ]
     },
     "execution_count": 49,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# type\n",
    "array.dtype\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# instead of writing like these -> np.random.randint(1,20)\n",
    "from numpy.random import randint\n",
    "\n",
    "# then we can directly call randint which will return random number in between 3 to 10 \n",
    "randint(3,10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr_1 = np.arange(1,20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## mathematical operator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,\n",
       "       18, 19])"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,\n",
       "       36, 38])"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1 + arr_1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,\n",
       "       196, 225, 256, 289, 324, 361])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1 * arr_1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1 - arr_1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
       "       1., 1.])"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1 / arr_1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 10,  20,  30,  40,  50,  60,  70,  80,  90, 100, 110, 120, 130,\n",
       "       140, 150, 160, 170, 180, 190])"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1*10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,\n",
       "       196, 225, 256, 289, 324, 361], dtype=int32)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_1**2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,\n",
       "       196, 225, 256, 289, 324, 361], dtype=int32)"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.square(arr_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "19"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.max(arr_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1.        , 1.41421356, 1.73205081, 2.        , 2.23606798,\n",
       "       2.44948974, 2.64575131, 2.82842712, 3.        , 3.16227766,\n",
       "       3.31662479, 3.46410162, 3.60555128, 3.74165739, 3.87298335,\n",
       "       4.        , 4.12310563, 4.24264069, 4.35889894])"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.sqrt(arr_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 5.45981500e+01,\n",
       "       1.48413159e+02, 4.03428793e+02, 1.09663316e+03, 2.98095799e+03,\n",
       "       8.10308393e+03, 2.20264658e+04, 5.98741417e+04, 1.62754791e+05,\n",
       "       4.42413392e+05, 1.20260428e+06, 3.26901737e+06, 8.88611052e+06,\n",
       "       2.41549528e+07, 6.56599691e+07, 1.78482301e+08])"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.exp(arr_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 0.84147098,  0.90929743,  0.14112001, -0.7568025 , -0.95892427,\n",
       "       -0.2794155 ,  0.6569866 ,  0.98935825,  0.41211849, -0.54402111,\n",
       "       -0.99999021, -0.53657292,  0.42016704,  0.99060736,  0.65028784,\n",
       "       -0.28790332, -0.96139749, -0.75098725,  0.14987721])"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# mathematical operator\n",
    "np.sin(arr_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0.        , 0.69314718, 1.09861229, 1.38629436, 1.60943791,\n",
       "       1.79175947, 1.94591015, 2.07944154, 2.19722458, 2.30258509,\n",
       "       2.39789527, 2.48490665, 2.56494936, 2.63905733, 2.7080502 ,\n",
       "       2.77258872, 2.83321334, 2.89037176, 2.94443898])"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.log(arr_1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Numpy indexing and selection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr_2d = np.array([+.\n",
    "                   [5,10,15],[20,23,45],[78,54,12]])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[ 5, 10, 15],\n",
       "       [20, 23, 45],\n",
       "       [78, 54, 12]])"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_2d"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_2d[0][1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[10, 15],\n",
       "       [23, 45]])"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#Grab Everything from row 2 which is starting from column 1 to onwords\n",
    "arr_2d[:2,1:]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([23, 45])"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_2d[1,1:]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "boolean = arr_2d > 30"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[False, False, False],\n",
       "       [False, False,  True],\n",
       "       [ True,  True, False]])"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "boolean"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([45, 78, 54])"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_2d[boolean]  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([23, 45, 78, 54])"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr_2d[arr_2d>20]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}
关于此算法

NumPy 基础

NumPy 是 Python 的线性代数库。它是一个重要的库,因为整个 PyData 生态系统都依赖于 NumPy。

import numpy as np

arr = [1,2,3]
arr
[1, 2, 3]
np.array(arr)
array([1, 2, 3])
my_mat = [[1,2,3],[4,5,6],[7,8,9]]

my_mat
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
np.array(my_mat)
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
my_mat[0][1]
2

Arange

# np.arange(start , last , offset)

np.arange(0,10)  
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.arange(0,5,1)
array([0, 1, 2, 3, 4])
np.arange(2,12,2)
array([ 2,  4,  6,  8, 10])

Zeros

# Zeros 

np.zeros(3)  # one dimensional
array([0., 0., 0.])
np.zeros((3,3))  # two dimensional
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])

Ones

# one's

np.ones(5)
array([1., 1., 1., 1., 1.])
np.ones((2,2))
array([[1., 1.],
       [1., 1.]])

Linespace

# linspace -> (start , end , how many point u want in between start to end)

np.linspace(0,5,10)
array([0.        , 0.55555556, 1.11111111, 1.66666667, 2.22222222,
       2.77777778, 3.33333333, 3.88888889, 4.44444444, 5.        ])

Eye

# Diagonal element 

np.eye(3)
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

随机函数

# random -> (number of points in between )

np.random.rand(5)
array([[0.93087129, 0.30534035, 0.2508104 ],
       [0.05900399, 0.39901502, 0.00206355],
       [0.10066378, 0.67083509, 0.95297132]])
np.random.rand(3,3)    
array([[0.29917792, 0.88770559, 0.0923786 ],
       [0.33748283, 0.56245829, 0.88557374],
       [0.88111555, 0.40227034, 0.28943298]])
# random based on standard normal distrubution

np.random.randn(3)
array([ 0.65926802, -0.18545583, -0.5672595 ])
# random number between start to end anything in interger format

np.random.randint(1,20)
8
#  start , end , numbers of points in between 
np.random.randint(1,20,5)
array([18, 12, 16,  3,  4])

Reshape

# reshape

# we can reshape the arr into 2 dimesional
# we can't resize 10 into 2 row and 3 column or anything we have to reshape into row 2 and column 5
                
array = np.arange(10)
array.reshape(2,5)
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

随机

number = np.random.randint(1,20,5);
print(number.max())
print(number.min())
print(number.argmax())  # return location where max is stored
print(number.argmin())  # return location where min is stored
17
2
0
2

Shape

 array.shape  #because its one dimesional 
(10,)

Dtype

# type
array.dtype
dtype('int32')
# instead of writing like these -> np.random.randint(1,20)
from numpy.random import randint

# then we can directly call randint which will return random number in between 3 to 10 
randint(3,10)
3
arr_1 = np.arange(1,20)

数学运算符

arr_1 
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19])
arr_1 + arr_1
array([ 2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,
       36, 38])
arr_1 * arr_1
array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,
       196, 225, 256, 289, 324, 361])
arr_1 - arr_1
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
arr_1 / arr_1
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1.])
arr_1*10
array([ 10,  20,  30,  40,  50,  60,  70,  80,  90, 100, 110, 120, 130,
       140, 150, 160, 170, 180, 190])
arr_1**2
array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,
       196, 225, 256, 289, 324, 361], dtype=int32)
np.square(arr_1)
array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121, 144, 169,
       196, 225, 256, 289, 324, 361], dtype=int32)
np.max(arr_1)
19
np.sqrt(arr_1)
array([1.        , 1.41421356, 1.73205081, 2.        , 2.23606798,
       2.44948974, 2.64575131, 2.82842712, 3.        , 3.16227766,
       3.31662479, 3.46410162, 3.60555128, 3.74165739, 3.87298335,
       4.        , 4.12310563, 4.24264069, 4.35889894])
np.exp(arr_1)
array([2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 5.45981500e+01,
       1.48413159e+02, 4.03428793e+02, 1.09663316e+03, 2.98095799e+03,
       8.10308393e+03, 2.20264658e+04, 5.98741417e+04, 1.62754791e+05,
       4.42413392e+05, 1.20260428e+06, 3.26901737e+06, 8.88611052e+06,
       2.41549528e+07, 6.56599691e+07, 1.78482301e+08])
# mathematical operator
np.sin(arr_1)
array([ 0.84147098,  0.90929743,  0.14112001, -0.7568025 , -0.95892427,
       -0.2794155 ,  0.6569866 ,  0.98935825,  0.41211849, -0.54402111,
       -0.99999021, -0.53657292,  0.42016704,  0.99060736,  0.65028784,
       -0.28790332, -0.96139749, -0.75098725,  0.14987721])
np.log(arr_1)
array([0.        , 0.69314718, 1.09861229, 1.38629436, 1.60943791,
       1.79175947, 1.94591015, 2.07944154, 2.19722458, 2.30258509,
       2.39789527, 2.48490665, 2.56494936, 2.63905733, 2.7080502 ,
       2.77258872, 2.83321334, 2.89037176, 2.94443898])

NumPy 索引和选择

arr_2d = np.array([+.
                   [5,10,15],[20,23,45],[78,54,12]])
arr_2d
array([[ 5, 10, 15],
       [20, 23, 45],
       [78, 54, 12]])
arr_2d[0][1]
10
#Grab Everything from row 2 which is starting from column 1 to onwords
arr_2d[:2,1:]
array([[10, 15],
       [23, 45]])
arr_2d[1,1:]
array([23, 45])
boolean = arr_2d > 30
boolean
array([[False, False, False],
       [False, False,  True],
       [ True,  True, False]])
arr_2d[boolean]  
array([45, 78, 54])
arr_2d[arr_2d>20]
array([23, 45, 78, 54])