package com.thealgorithms.sorts;
import java.util.Arrays;
/**
* @author <a href="https://github.com/siddhant2002">Siddhant Swarup Mallick</a>
* Program description - To sort the LinkList as per sorting technique
*/
public class LinkListSort {
public static boolean isSorted(int[] p, int option) {
int[] a = p;
// Array is taken as input from test class
int[] b = p;
// array similar to a
int ch = option;
// Choice is choosed as any number from 1 to 3 (So the linked list will be
// sorted by Merge sort technique/Insertion sort technique/Heap sort technique)
switch (ch) {
case 1:
Task nm = new Task();
Node start = null;
Node prev = null;
Node fresh;
Node ptr;
for (int i = 0; i < a.length; i++) {
// New nodes are created and values are added
fresh = new Node(); // Node class is called
fresh.val = a[i]; // Node val is stored
if (start == null) {
start = fresh;
} else {
prev.next = fresh;
}
prev = fresh;
}
start = nm.sortByMergeSort(start);
// method is being called
int i = 0;
for (ptr = start; ptr != null; ptr = ptr.next) {
a[i++] = ptr.val;
// storing the sorted values in the array
}
Arrays.sort(b);
// array b is sorted and it will return true when checked with sorted list
LinkListSort uu = new LinkListSort();
return uu.compare(a, b);
// The given array and the expected array is checked if both are same then true
// is displayed else false is displayed
case 2:
Node start1 = null;
Node prev1 = null;
Node fresh1;
Node ptr1;
for (int i1 = 0; i1 < a.length; i1++) {
// New nodes are created and values are added
fresh1 = new Node(); // New node is created
fresh1.val = a[i1]; // Value is stored in the value part of the node
if (start1 == null) {
start1 = fresh1;
} else {
prev1.next = fresh1;
}
prev1 = fresh1;
}
Task1 kk = new Task1();
start1 = kk.sortByInsertionSort(start1);
// method is being called
int i1 = 0;
for (ptr1 = start1; ptr1 != null; ptr1 = ptr1.next) {
a[i1++] = ptr1.val;
// storing the sorted values in the array
}
LinkListSort uu1 = new LinkListSort();
// array b is not sorted and it will return false when checked with sorted list
return uu1.compare(a, b);
// The given array and the expected array is checked if both are same then true
// is displayed else false is displayed
case 3:
Task2 mm = new Task2();
Node start2 = null;
Node prev2 = null;
Node fresh2;
Node ptr2;
for (int i2 = 0; i2 < a.length; i2++) {
// New nodes are created and values are added
fresh2 = new Node(); // Node class is created
fresh2.val = a[i2]; // Value is stored in the value part of the Node
if (start2 == null) {
start2 = fresh2;
} else {
prev2.next = fresh2;
}
prev2 = fresh2;
}
start2 = mm.sortByHeapSort(start2);
// method is being called
int i3 = 0;
for (ptr2 = start2; ptr2 != null; ptr2 = ptr2.next) {
a[i3++] = ptr2.val;
// storing the sorted values in the array
}
Arrays.sort(b);
// array b is sorted and it will return true when checked with sorted list
LinkListSort uu2 = new LinkListSort();
return uu2.compare(a, b);
// The given array and the expected array is checked if both are same then true
// is displayed else false is displayed
default:
// default is used incase user puts a unauthorized value
System.out.println("Wrong choice");
}
// Switch case is used to call the classes as per the user requirement
return false;
}
/**
* OUTPUT :
* Input - {89,56,98,123,26,75,12,40,39,68,91} is same for all the 3 classes
* Output: [12 26 39 40 56 68 75 89 91 98 123] is same for all the 3 classes
* 1st approach Time Complexity : O(n logn)
* Auxiliary Space Complexity : O(n)
* 2nd approach Time Complexity : O(n^2)
* Auxiliary Space Complexity : O(n)
* 3rd approach Time Complexity : O(n logn)
* Auxiliary Space Complexity : O(n)
*/
boolean compare(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
// Both the arrays are checked for equalness. If both are equal then true is
// returned else false is returned
}
}
class Node {
int val;
Node next;
// Node class for creation of linklist nodes
}
class Task {
private int[] a;
public Node sortByMergeSort(Node head) {
if (head == null || head.next == null) {
return head;
}
int c = count(head);
a = new int[c];
// Array of size c is created
int i = 0;
for (Node ptr = head; ptr != null; ptr = ptr.next) {
a[i++] = ptr.val;
}
// values are stored in the array
i = 0;
task(a, 0, c - 1);
// task method will be executed
for (Node ptr = head; ptr != null; ptr = ptr.next) {
ptr.val = a[i++];
// Value is stored in the linklist after being sorted
}
return head;
}
int count(Node head) {
int c = 0;
Node ptr;
for (ptr = head; ptr != null; ptr = ptr.next) {
c++;
}
return c;
// This Method is used to count number of elements/nodes present in the linklist
// It will return a integer type value denoting the number of nodes present
}
void task(int[] n, int i, int j) {
if (i < j) {
int m = (i + j) / 2;
task(n, i, m);
task(n, m + 1, j);
task1(n, i, m, j);
// Array is halved and sent for sorting
}
}
void task1(int[] n, int s, int m, int e) {
int i = s;
int k = 0;
int j = m + 1;
int[] b = new int[e - s + 1];
while (i <= m && j <= e) {
if (n[j] >= n[i]) {
b[k++] = n[i++];
} else {
b[k++] = n[j++];
}
}
// Smallest number is stored after checking from both the arrays
while (i <= m) {
b[k++] = n[i++];
}
while (j <= e) {
b[k++] = n[j++];
}
for (int p = s; p <= e; p++) {
a[p] = b[p - s];
}
}
// The method task and task1 is used to sort the linklist using merge sort
}
class Task1 {
public Node sortByInsertionSort(Node head) {
if (head == null || head.next == null) {
return head;
}
int c = count(head);
int[] a = new int[c];
// Array of size c is created
a[0] = head.val;
int i;
Node ptr;
for (ptr = head.next, i = 1; ptr != null; ptr = ptr.next, i++) {
int j = i - 1;
while (j >= 0 && a[j] > ptr.val) {
// values are stored in the array
a[j + 1] = a[j];
j--;
}
a[j + 1] = ptr.val;
}
i = 0;
for (ptr = head; ptr != null; ptr = ptr.next) {
ptr.val = a[i++];
// Value is stored in the linklist after being sorted
}
return head;
}
static int count(Node head) {
Node ptr;
int c = 0;
for (ptr = head; ptr != null; ptr = ptr.next) {
c++;
}
return c;
// This Method is used to count number of elements/nodes present in the linklist
// It will return a integer type value denoting the number of nodes present
}
// The method task and task1 is used to sort the linklist using insertion sort
}
class Task2 {
private int[] a;
public Node sortByHeapSort(Node head) {
if (head == null || head.next == null) {
return head;
}
int c = count(head);
a = new int[c];
// Array of size c is created
int i = 0;
for (Node ptr = head; ptr != null; ptr = ptr.next) {
a[i++] = ptr.val;
// values are stored in the array
}
i = 0;
task(a);
for (Node ptr = head; ptr != null; ptr = ptr.next) {
ptr.val = a[i++];
// Value is stored in the linklist after being sorted
}
return head;
}
int count(Node head) {
int c = 0;
Node ptr;
for (ptr = head; ptr != null; ptr = ptr.next) {
c++;
}
return c;
// This Method is used to count number of elements/nodes present in the linklist
// It will return a integer type value denoting the number of nodes present
}
void task(int[] n) {
int k = n.length;
for (int i = k / 2 - 1; i >= 0; i--) {
task1(n, k, i);
}
for (int i = k - 1; i > 0; i--) {
int d = n[0];
n[0] = n[i];
n[i] = d;
task1(n, i, 0);
// recursive calling of task1 method
}
}
void task1(int[] n, int k, int i) {
int p = i;
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l < k && n[l] > n[p]) {
p = l;
}
if (r < k && n[r] > n[p]) {
p = r;
}
if (p != i) {
int d = n[p];
n[p] = n[i];
n[i] = d;
task1(n, k, p);
}
}
// The method task and task1 is used to sort the linklist using heap sort
}