/**
* @file
* @author [Aditya Prakash](https://adityaprakash.tech)
* @brief This is an implementation of a recursive version of the [Bubble sort algorithm](https://www.geeksforgeeks.org/recursive-bubble-sort/)
*
* @details
* The working principle of the Bubble sort algorithm.
* Bubble sort is a simple sorting algorithm used to rearrange a set of ascending or descending order elements.
* Bubble sort gets its name from the fact that data "bubbles" to the top of the dataset.
* ### Algorithm
* What is Swap?
* Swapping two numbers means that we interchange their values.
* Often, an additional variable is required for this operation.
* This is further illustrated in the following:
* void swap(int x, int y){
* int z = x;
* x = y;
* y = z;
* }
* The above process is a typical displacement process.
* When we assign a value to x, the old value of x is lost.
* That's why we create a temporary variable z to store the initial value of x.
* z is further used to assign the initial value of x to y, to complete swapping.
* Recursion
* While the recursive method does not necessarily have advantages over iterative
* versions, but it is useful to enhance the understanding of the algorithm and
* recursion itself. In Recursive Bubble sort algorithm, we firstly call the
* function on the entire array, and for every subsequent function call, we exclude
* the last element. This fixes the last element for that sub-array.Formally, for
* `ith` iteration, we consider elements up to n-i, where n is the number of
* elements in the array. Exit condition: n==1; i.e. the sub-array contains only
* one element.
* Complexity
* Time complexity: O(n) best case; O(n²) average case; O(n²) worst case
* Space complexity: O(n)
* We need to traverse the array `n * (n-1)` times. However, if the entire array is
* already sorted, then we need to traverse it only once. Hence, O(n) is the best case
* complexity
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
#include <array> /// for std::array
#include <algorithm> /// for std::is_sorted
/**
* @namespace sorting
* @brief Sorting algorithms
*/
namespace sorting {
/**
* @brief This is an implementation of the recursive_bubble_sort. A vector is passed
* to the function which is then dereferenced, so that the changes are
* reflected in the original vector. It also accepts a second parameter of
* type `int` and name `n`, which is the size of the array.
*
* @tparam T type of data variables in the array
* @param nums our array of elements.
* @param n size of the array
*/
template <typename T>
void recursive_bubble_sort(std::vector<T> *nums, uint64_t n) {
if (n == 1) { //!< base case; when size of the array is 1
return;
}
for (uint64_t i = 0; i < n - 1; i++) { //!< iterating over the entire array
//!< if a larger number appears before the smaller one, swap them.
if ((*nums)[i] > (*nums)[i + 1]) {
std::swap((*nums)[i], (*nums)[i + 1]);
}
}
//!< calling the function after we have fixed the last element
recursive_bubble_sort(nums, n - 1);
}
} // namespace sorting
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
// 1st example. Creating an array of type `int`.
std::cout << "1st test using `int`\n";
const uint64_t size = 6;
std::vector<int64_t> arr;
// populating the array
arr.push_back(22);
arr.push_back(46);
arr.push_back(94);
arr.push_back(12);
arr.push_back(37);
arr.push_back(63);
// array populating ends
sorting::recursive_bubble_sort(&arr, size);
assert(std::is_sorted(std::begin(arr), std::end(arr)));
std::cout << " 1st test passed!\n";
// printing the array
for (uint64_t i = 0; i < size; i++) {
std::cout << arr[i] << ", ";
}
std::cout << std::endl;
// 2nd example. Creating an array of type `double`.
std::cout << "2nd test using doubles\n";
std::vector<double> double_arr;
// populating the array
double_arr.push_back(20.4);
double_arr.push_back(62.7);
double_arr.push_back(12.2);
double_arr.push_back(43.6);
double_arr.push_back(74.1);
double_arr.push_back(57.9);
// array populating ends
sorting::recursive_bubble_sort(&double_arr, size);
assert(std::is_sorted(std::begin(double_arr), std::end(double_arr)));
std::cout << " 2nd test passed!\n";
// printing the array
for (uint64_t i = 0; i < size; i++) {
std::cout << double_arr[i] << ", ";
}
std::cout << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}
冒泡排序是最简单的排序算法之一,它一次比较两个元素,如果它们顺序错误就交换它们。重复此过程,直到整个序列按顺序排列。
O(n ^ 2)
;最佳情况下为 O(n)
。O(n)
;请注意,迭代冒泡排序的空间复杂度为 O(1)
。基本情况:如果数组的大小为 1,则返回。
假设给定的数组为:{5, 3, 2, 1, 4}
第一次迭代
5
, 3
, 2, 1, 4} -> {3
, 5
, 2, 1, 4} 交换,因为 5 > 3
5
, 2
, 1, 4} -> {3, 2
, 5
, 1, 4} 交换,因为 5 > 2
5
, 1
, 4} -> {3, 2, 1
, 5
, 4} 交换,因为 5 > 1
5
, 4
} -> {3, 2, 1, 4
, 5
} 交换,因为 5 > 4
这次迭代已经固定了 5 的位置。现在,我们将考虑索引为 3 之前的数组。
第二次迭代
3
, 2
, 1, 4, 5} -> {2
, 3
, 1, 4, 5} 交换,因为 3 > 2
3
, 1
, 4, 5} -> {2, 1
, 3
, 4, 5} 交换,因为 3 > 1
3
, 4
, 5}; 由于 3 < 4
,不交换注意:由于我们每次迭代都检查少一个元素,因此我们不需要索引为 3 和 4 的元素,即 4
和 5
,因为 5 已经排好序了。正式地说,对于包含 n
个整数的数组,我们只考虑索引为 n - i
之前的元素,其中 i
是迭代次数。
第三次迭代
2
, 1
, 3, 4, 5} -> {1
, 2
, 3, 4, 5} 交换,因为 1 > 2
2
, 3
, 4, 5}; 由于 2 < 3
,不交换第四次迭代
1
, 2
, 3, 4, 5}; 由于 1 < 2
,不交换第五次迭代
1
, 2, 3, 4, 5}; 由于数组的大小为 1,则返回。注意:这是基本情况。
void bubbleSort(arr[], n)
if(n==1)
return;
for(i = 0; i<n-1; i++)
if(arr[i] > arr[i+1])
swap(arr[i], arr[i+1])
bubbleSort(arr, n-1)