The Algorithms logo
算法
关于我们捐赠

解联立同余式

d
local modular_inverse = require("math.modular_inverse")

local function all_moduli_prod(congruences)
	local res = 1
	for _, congruence in ipairs(congruences) do
		res = res * congruence[2]
	end
	return res
end

-- Solves system of simultaneous congruences, i.e. the system of the form:
-- ```
-- x = a_0 mod m_0
-- x = a_1 mod m_1
-- ...
-- ```
-- where `a_0`, `a_1`, ... and `m_0`, `m_1`, ... are given.
--
-- The system is represented by a list of pairs.
-- The pair `{a, m}` represents a congruence `x = a mod m`.
-- For the input `{{a_0, m_0}, {a_1, m_1}, ...}`,
-- it finds a number `x`, such that
-- `x = a_i mod m_i` and `0 < x < m_0 * m_1 * ...`.
-- The implementation is based on the Chinese remainder theorem.
return function(congruences)
	local all_prod = all_moduli_prod(congruences)

	local res = 0
	for _, congruence in ipairs(congruences) do
		local residue = congruence[1]
		local modulus = congruence[2]
		local cur_prod = math.floor(all_prod / modulus)
		local cur_inv = modular_inverse(cur_prod, modulus)
		if cur_inv == nil then
			-- moduli of the congruences are not co-prime
			return nil
		end
		res = (res + residue * cur_inv * cur_prod) % all_prod
	end

	return res
end