The Algorithms logo
算法
关于我们捐赠

Tarjan 的强连通分量

P
pub struct Graph {
    n: usize,
    adj_list: Vec<Vec<usize>>,
}

impl Graph {
    pub fn new(n: usize) -> Self {
        Self {
            n,
            adj_list: vec![vec![]; n],
        }
    }

    pub fn add_edge(&mut self, u: usize, v: usize) {
        self.adj_list[u].push(v);
    }
}
pub fn tarjan_scc(graph: &Graph) -> Vec<Vec<usize>> {
    struct TarjanState {
        index: i32,
        stack: Vec<usize>,
        on_stack: Vec<bool>,
        index_of: Vec<i32>,
        lowlink_of: Vec<i32>,
        components: Vec<Vec<usize>>,
    }

    let mut state = TarjanState {
        index: 0,
        stack: Vec::new(),
        on_stack: vec![false; graph.n],
        index_of: vec![-1; graph.n],
        lowlink_of: vec![-1; graph.n],
        components: Vec::new(),
    };

    fn strong_connect(v: usize, graph: &Graph, state: &mut TarjanState) {
        state.index_of[v] = state.index;
        state.lowlink_of[v] = state.index;
        state.index += 1;
        state.stack.push(v);
        state.on_stack[v] = true;

        for &w in &graph.adj_list[v] {
            if state.index_of[w] == -1 {
                strong_connect(w, graph, state);
                state.lowlink_of[v] = state.lowlink_of[v].min(state.lowlink_of[w]);
            } else if state.on_stack[w] {
                state.lowlink_of[v] = state.lowlink_of[v].min(state.index_of[w]);
            }
        }

        if state.lowlink_of[v] == state.index_of[v] {
            let mut component: Vec<usize> = Vec::new();
            while let Some(w) = state.stack.pop() {
                state.on_stack[w] = false;
                component.push(w);
                if w == v {
                    break;
                }
            }
            state.components.push(component);
        }
    }

    for v in 0..graph.n {
        if state.index_of[v] == -1 {
            strong_connect(v, graph, &mut state);
        }
    }

    state.components
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_tarjan_scc() {
        // Test 1: A graph with multiple strongly connected components
        let n_vertices = 11;
        let edges = vec![
            (0, 1),
            (0, 3),
            (1, 2),
            (1, 4),
            (2, 0),
            (2, 6),
            (3, 2),
            (4, 5),
            (4, 6),
            (5, 6),
            (5, 7),
            (5, 8),
            (5, 9),
            (6, 4),
            (7, 9),
            (8, 9),
            (9, 8),
        ];
        let mut graph = Graph::new(n_vertices);

        for &(u, v) in &edges {
            graph.add_edge(u, v);
        }

        let components = tarjan_scc(&graph);
        assert_eq!(
            components,
            vec![
                vec![8, 9],
                vec![7],
                vec![5, 4, 6],
                vec![3, 2, 1, 0],
                vec![10],
            ]
        );

        // Test 2: A graph with no edges
        let n_vertices = 5;
        let edges: Vec<(usize, usize)> = vec![];
        let mut graph = Graph::new(n_vertices);

        for &(u, v) in &edges {
            graph.add_edge(u, v);
        }

        let components = tarjan_scc(&graph);

        // Each node is its own SCC
        assert_eq!(
            components,
            vec![vec![0], vec![1], vec![2], vec![3], vec![4]]
        );

        // Test 3: A graph with single strongly connected component
        let n_vertices = 5;
        let edges = vec![(0, 1), (1, 2), (2, 3), (2, 4), (3, 0), (4, 2)];
        let mut graph = Graph::new(n_vertices);

        for &(u, v) in &edges {
            graph.add_edge(u, v);
        }

        let components = tarjan_scc(&graph);
        assert_eq!(components, vec![vec![4, 3, 2, 1, 0]]);

        // Test 4: A graph with multiple strongly connected component
        let n_vertices = 7;
        let edges = vec![
            (0, 1),
            (1, 2),
            (2, 0),
            (1, 3),
            (1, 4),
            (1, 6),
            (3, 5),
            (4, 5),
        ];
        let mut graph = Graph::new(n_vertices);

        for &(u, v) in &edges {
            graph.add_edge(u, v);
        }

        let components = tarjan_scc(&graph);
        assert_eq!(
            components,
            vec![vec![5], vec![3], vec![4], vec![6], vec![2, 1, 0],]
        );
    }
}